Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Medizinische Diagnose der Zukunft: Reinhart-Koselleck-Projekt für Leif Schröder

02.08.2016

Der Physiker Leif Schröder erhält eine Förderung von insgesamt 1,525 Millionen EURO im Koselleck-Programm der DFG für hoch innovative Forschungen zur Detektion von Tumoren

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) und die Leibniz-Gemeinschaft haben ihr erstes Koselleck-Projekt eingeworben: Leif Schröder forscht an einem neuartigen, nicht-invasiven bildgebenden Diagnoseverfahren. Die bekannte Magnetresonanz-Tomographie (MRT) spielt hierbei eine Schlüsselrolle, obwohl sie normalerweise auf das Aufspüren von relativ hoch konzentrierten Molekülen beschränkt ist.


Leif Schröder mit einem Molekül-Modell eines Biosensors und einem Gas-Ballon als Symbol für das bei der Diagnose wichtige Edelgas Xenon.

Silke Oßwald

Das ist ein großer Nachteil des ansonsten für den Patienten schonenden Diagnoseverfahrens. Durch die Methode der Spin-Hyperpolarisierung soll jetzt ein Großteil des zuvor etwa zu 99,9 Prozent nicht genutzten Potentials dazu gewonnen werden, um nun auch schwach konzentrierte Moleküle sichtbar zu machen. Herausforderungen bleiben die schnelle Abschwächung der Hyperpolarisierung und die Detektion im Gewebe.

Leif Schröder und seine Gruppe spüren mit Biosensoren gewünschte Zielmoleküle auf und vereinen sie dann erst an lebenden Zellen mit den hyperpolarisierten Atomen. Die zusätzliche Verbindung mit dem Edelgas Xenon macht die Biosensoren zu hochempfindlichen Detektiven, die gefundene Zielmoleküle bereits bei millionen-fach reduzierten Aufnahmezeiten nachweisen.

Im aktuellen Koselleck-Forschungsprojekt interessiert sich die Gruppe nun für die Detektion in lebendem Gewebe, ein Experiment, das weltweit noch nicht realisiert werden konnte. „Das soll sich bald ändern. In unserem interdisziplinären Koselleck-Projekt werden wir die Entwicklung neuartiger Nanotransporter realisieren, die im Gewebe eine große Anzahl von hyperpolarisierten Atomen aufnehmen können“, sagt Leif Schröder.

Ziel bei dem Forschungsvorhaben ist es, die Visualisierung von anspruchsvollen Biomarkern zu realisieren, wie Zelloberflächen-Glykanen. Diese Zuckerverbindungen enthalten wertvolle diagnostische Information über die Bösartigkeit von Tumoren.

Leif Schröder konnte die Deutsche Forschungsgemeinschaft (DFG) mit seinem Projektantrag überzeugen, welchen sie als „in hohem Maß innovativ und im positiven Sinn risikobehaftet“ auszeichnet. Ein Erfolg dieses Projektes würde einen „Quantensprung“ in der medizinischen Diagnostik bedeuten, wie es weiter in der Begutachtung heißt. Schröders Projekt wird von der DFG als „Musterbeispiel für das Koselleck-Programm“ angesehen, das den Forschern angemessene Flexibilität und Zeit ließe, größere Durchbrüche zu wagen.

Die Arbeitsgruppe erhält für einen Zeitraum von fünf Jahren 1,525 Millionen Euro, die durch ein weiteres Engagement des FMP auf diesem Gebiet ergänzt wird.

Jedes Jahr werden bis zu zehn Koselleck-Projekte ausgezeichnet, deutschlandweit gibt es insgesamt 71, in Berlin aktuell vier.

Titel des Projekts:

Multivalent Hosts for Hyperpolarized Xenon Enabling in vivo MRI Visualization of Tumor Cell Surface Glycans /

Multivalente Wirtsstrukturen für hyperpolarisiertes Xenon zur In-Vivo-Darstellung von Zelloberflächen-Glycanen in Tumoren mittels MRT

Kontakt:

Dr. Leif Schröder
Leibniz-Institut für Molekulare Pharmakologie (FMP)
E-Mail: lschroeder@fmp-berlin.de
Tel.: 0049 30 94793-121

Öffentlichkeitsarbeit:
Silke Oßwald
E-mail: osswald@fmp-berlin.de
Tel: 0049 30 94793 104

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics