Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher Prof. Thomas Willnow erhält Franz-Volhard-Preis

12.09.2011
Prof. Thomas Willnow vom Max-Delbrück-Centrum (MDC) hat am 10. September 2011 im Rahmen der Eröffnung des Jahreskongresses der Deutschen Gesellschaft für Nephrologie in Berlin den Franz-Volhard-Preis erhalten.

Er fand heraus, dass die an Transportproteine gebundenen Vitamine D, A und B12 über einen speziellen Prozess in den Nierenkanälchen der Ausscheidung entgehen. Ist dieser Prozess gestört, kommt es zu Vitaminmangelerscheinungen. Weiter entdeckte er, dass dieser Vorgang auch dafür verantwortlich ist, dass nierenschädigende Antibiotika nicht ausgeschieden werden. Der MDC-Forscher teilt sich den mit insgesamt 10 000 Euro dotierten Preis mit PD Dr. Marcus J. Möller von der RWTH Aachen.

Damit der Körper funktionsfähig und gesund bleibt, werden Endprodukte des Stoffwechsels über die Nieren aus dem Blut herausgefiltert und mit dem Harn ausgeschieden. Dafür besitzt die Niere ein ausgeklügeltes Filtrier- und Sortiersystem in ihren über eine Million Nephronen. Das sind spezielle Funktionseinheiten, die für die Bildung des Harns zuständig sind. Sie bestehen jeweils aus dem Nierenkörperchen (Glomerulus) und dem Nierenkanälchen (Tubulus).

Zunächst wird das Blut im Nierenkörperchen grob filtriert. Große Bestandteile wie beispielsweise Blutzellen oder Makromoleküle verbleiben im Blutkreislauf. Das filtrierte Blutplasma bildet den so genannten Primärharn. Darin sind neben Stoffwechselendprodukten aber noch viele für den Körper wertvolle Substanzen wie Glucose, Elektrolyte oder Proteine enthalten, die in einem Bereich des Nierenkanälchens, dem so genannten proximalen Tubulus, von den Nierenzellen gezielt aufgenommen (resorbiert) werden.

Das geschieht entweder über spezifische Kanäle in der Zellmembran der Nierenzellen oder – wie Prof. Willnow für Plasmaproteine herausfand – über die so genannte rezeptorvermittelte Endozytose. Dabei binden die Proteine an den Rezeptor Megalin, der sich in der Zellmembran der Nierenzellen befindet. Dann stülpt sich die Zellmembran nach innen und nimmt den Protein-Rezeptor-Komplex in die Nierenzelle auf. Auf diese Weise werden die Proteine aus dem Primärharn entfernt und entgehen der Ausscheidung.

„Doch eigentlich ist die Resorption der Proteine selbst für den Körper gar nicht so wichtig – sie sind nur Mittel zum Zweck“, erklärt Prof. Willnow. Warum das so ist, fanden Willnow und sein Team in Mäusen heraus, denen der Rezeptor Megalin fehlt. Im Primärharn dieser Tiere fanden sich so genannte Carrier-Proteine, die normalerweise die Vitamine D, A und B12 im Blut transportieren. Außerdem schieden die Tiere große Mengen der entsprechenden Vitamine aus. „Es geht also vor allem darum, die an die Proteine gebundenen Vitamine in der Niere zurückzugewinnen“, sagt Prof. Willnow. „Ist die Funktion des Rezeptor Megalin gestört, kommt es zu schweren Vitaminstörungen.“

Die nierenschädigende Wirkung von Medikamenten, wie beispielsweise Aminoglykosid-Antibiotika liegt darin begründet, dass sie nicht ausgeschieden, sondern in der Niere aus dem Primärharn resorbiert werden. Willnow und sein Team konnten nachweisen, dass Aminoglykoside ebenfalls an den Rezeptor Megalin binden und sich auf diese Weise in den Nierenzellen anreichern. Aminoglykoside sind sehr effektive Antibiotika gegen die es kaum Resistenzen gibt. Da sie aber bei etwa zehn Prozent der Patienten zu schweren Nierenschäden führen, werden sie bislang nur bei äußerst kritischen Krankheitsverläufen angewandt.

Doch das könnte sich in Kürze ändern: Willnow und sein Team entwickelten Megalin-Hemmer, die sie im Tiermodell bei gleichzeitiger Gabe von Aminoglykosiden erfolgreich testeten. „Es trat keine nierenschädigende Wirkung durch die Antibiotika auf. Unsere Ergebnisse könnten in Zukunft eine breitere und sicherere Anwendung von Aminoglykosiden ermöglichen – was vor allem in Hinblick auf das schwindende Repertoire leistungsstarker Antibiotika wichtig wäre“, sagt Prof. Willnow.

Thomas Willnow, geboren 1961 in Heidelberg, studierte an der Universität München Biologie und promovierte im Jahr 1992 in Biochemie. Es folgte ein mehrjähriger Forschungsaufenthalt am Southwestern Medical Center in Dallas, USA. 1996 erhielt er eine Nachwuchsforschungsgruppe am MDC und ist seit 2001 MDC-Forschungsgruppenleiter. Im gleichen Jahr wurde er zum Professor an der Freien Universität (FU) Berlin berufen.

Für seine Forschungen erhielt Thomas Willnow zahlreiche Auszeichnungen, darunter den Heinrich-Wieland-Preis (1998), den Forschungspreis der Alzheimer Forschungs Initiative e.V. (2006), sowie die Ehrendoktorwürde der Universität Aarhus (2009). 1996 war er Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft.

Der Preis der Deutschen Gesellschaft für Nephrologie ist benannt nach dem Internisten und Nierenspezialisten Franz Volhard (1872 München - 1950 Frankfurt/Main).

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie