Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MDC-Forscher Prof. Thomas Willnow erhält Franz-Volhard-Preis

12.09.2011
Prof. Thomas Willnow vom Max-Delbrück-Centrum (MDC) hat am 10. September 2011 im Rahmen der Eröffnung des Jahreskongresses der Deutschen Gesellschaft für Nephrologie in Berlin den Franz-Volhard-Preis erhalten.

Er fand heraus, dass die an Transportproteine gebundenen Vitamine D, A und B12 über einen speziellen Prozess in den Nierenkanälchen der Ausscheidung entgehen. Ist dieser Prozess gestört, kommt es zu Vitaminmangelerscheinungen. Weiter entdeckte er, dass dieser Vorgang auch dafür verantwortlich ist, dass nierenschädigende Antibiotika nicht ausgeschieden werden. Der MDC-Forscher teilt sich den mit insgesamt 10 000 Euro dotierten Preis mit PD Dr. Marcus J. Möller von der RWTH Aachen.

Damit der Körper funktionsfähig und gesund bleibt, werden Endprodukte des Stoffwechsels über die Nieren aus dem Blut herausgefiltert und mit dem Harn ausgeschieden. Dafür besitzt die Niere ein ausgeklügeltes Filtrier- und Sortiersystem in ihren über eine Million Nephronen. Das sind spezielle Funktionseinheiten, die für die Bildung des Harns zuständig sind. Sie bestehen jeweils aus dem Nierenkörperchen (Glomerulus) und dem Nierenkanälchen (Tubulus).

Zunächst wird das Blut im Nierenkörperchen grob filtriert. Große Bestandteile wie beispielsweise Blutzellen oder Makromoleküle verbleiben im Blutkreislauf. Das filtrierte Blutplasma bildet den so genannten Primärharn. Darin sind neben Stoffwechselendprodukten aber noch viele für den Körper wertvolle Substanzen wie Glucose, Elektrolyte oder Proteine enthalten, die in einem Bereich des Nierenkanälchens, dem so genannten proximalen Tubulus, von den Nierenzellen gezielt aufgenommen (resorbiert) werden.

Das geschieht entweder über spezifische Kanäle in der Zellmembran der Nierenzellen oder – wie Prof. Willnow für Plasmaproteine herausfand – über die so genannte rezeptorvermittelte Endozytose. Dabei binden die Proteine an den Rezeptor Megalin, der sich in der Zellmembran der Nierenzellen befindet. Dann stülpt sich die Zellmembran nach innen und nimmt den Protein-Rezeptor-Komplex in die Nierenzelle auf. Auf diese Weise werden die Proteine aus dem Primärharn entfernt und entgehen der Ausscheidung.

„Doch eigentlich ist die Resorption der Proteine selbst für den Körper gar nicht so wichtig – sie sind nur Mittel zum Zweck“, erklärt Prof. Willnow. Warum das so ist, fanden Willnow und sein Team in Mäusen heraus, denen der Rezeptor Megalin fehlt. Im Primärharn dieser Tiere fanden sich so genannte Carrier-Proteine, die normalerweise die Vitamine D, A und B12 im Blut transportieren. Außerdem schieden die Tiere große Mengen der entsprechenden Vitamine aus. „Es geht also vor allem darum, die an die Proteine gebundenen Vitamine in der Niere zurückzugewinnen“, sagt Prof. Willnow. „Ist die Funktion des Rezeptor Megalin gestört, kommt es zu schweren Vitaminstörungen.“

Die nierenschädigende Wirkung von Medikamenten, wie beispielsweise Aminoglykosid-Antibiotika liegt darin begründet, dass sie nicht ausgeschieden, sondern in der Niere aus dem Primärharn resorbiert werden. Willnow und sein Team konnten nachweisen, dass Aminoglykoside ebenfalls an den Rezeptor Megalin binden und sich auf diese Weise in den Nierenzellen anreichern. Aminoglykoside sind sehr effektive Antibiotika gegen die es kaum Resistenzen gibt. Da sie aber bei etwa zehn Prozent der Patienten zu schweren Nierenschäden führen, werden sie bislang nur bei äußerst kritischen Krankheitsverläufen angewandt.

Doch das könnte sich in Kürze ändern: Willnow und sein Team entwickelten Megalin-Hemmer, die sie im Tiermodell bei gleichzeitiger Gabe von Aminoglykosiden erfolgreich testeten. „Es trat keine nierenschädigende Wirkung durch die Antibiotika auf. Unsere Ergebnisse könnten in Zukunft eine breitere und sicherere Anwendung von Aminoglykosiden ermöglichen – was vor allem in Hinblick auf das schwindende Repertoire leistungsstarker Antibiotika wichtig wäre“, sagt Prof. Willnow.

Thomas Willnow, geboren 1961 in Heidelberg, studierte an der Universität München Biologie und promovierte im Jahr 1992 in Biochemie. Es folgte ein mehrjähriger Forschungsaufenthalt am Southwestern Medical Center in Dallas, USA. 1996 erhielt er eine Nachwuchsforschungsgruppe am MDC und ist seit 2001 MDC-Forschungsgruppenleiter. Im gleichen Jahr wurde er zum Professor an der Freien Universität (FU) Berlin berufen.

Für seine Forschungen erhielt Thomas Willnow zahlreiche Auszeichnungen, darunter den Heinrich-Wieland-Preis (1998), den Forschungspreis der Alzheimer Forschungs Initiative e.V. (2006), sowie die Ehrendoktorwürde der Universität Aarhus (2009). 1996 war er Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft.

Der Preis der Deutschen Gesellschaft für Nephrologie ist benannt nach dem Internisten und Nierenspezialisten Franz Volhard (1872 München - 1950 Frankfurt/Main).

Barbara Bachtler
Pressestelle
Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch
in der Helmholtz-Gemeinschaft
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

nachricht EU-Förderung in Millionenhöhe für Regensburger Wissenschaftler
21.04.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung