Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LMU-Forscher erhalten Förderung in Millionenhöhe: Neuronalen Netzen, Stammzellen und der Echoortung auf der Spur

01.04.2009
Drei "Research Grants" des "Human Frontier Science Programs (HFSP)" gehen in diesem Jahr an Teams, denen auch LMU-Forscher angehören.

In den Projekten geht es um die Verarbeitung akustischer Spiegel durch Fledermäuse, die Entwicklung von Neuronalen Netzwerken und die Auswirkung der Zellkernorganisation auf die Differenzierung von Stammzellen.

Die Fördersumme beträgt je Projekt rund 900.000 Euro für drei Jahre. Das "Human Frontier Science Program (HFSP)" fördert internationale Forschungskooperationen in den Lebenswissenschaften, die sich der Aufklärung komplexer Mechanismen lebender Systeme widmen.

Getragen wird das Programm unter anderen von Deutschland, Japan, Kanada, den USA und der Europäischen Union. Über HFSP werden in erster Linie Kooperationsprojekte gefördert, wobei sich nur Forscherteams bewerben können, denen Wissenschaftler aus mindestens zwei Ländern angehören. Die Kooperationspartner sollen Fragestellungen angehen, die nur im Team und mit interdisziplinärer Herangehensweise bewältigt werden können.

Unter der Leitung von Privatdozent Dr. Lutz Wiegrebe am Biozentrum der LMU wird sich ein deutsch-israelisches Forscherteam der Echoortung der Fledermäuse widmen. Die Tiere senden Ultraschall-Signale aus, die von festen Objekten reflektiert und dann als Echo wahrgenommen werden. Ein Sonderfall sind "akustische Spiegel", etwa Wasserflächen, die die Ultraschall-Signale selbst wieder reflektieren. Treffen diese dann etwa auf ein Beutetier kehrt das Echo zurück auf die Wasserfläche und wird dann zur Fledermaus zurückgespiegelt.

Weil der Tier zudem aber auch ein direktes Echo empfängt, treffen letztlich zwei unterschiedliche "Ansichten" desselben Objektes zusammen: Das Tier muss die Spiegelung erkennen und ausblenden. "Wir wollen unter anderem wissen, was die Fledermäuse als Wasser wahrnehmen und ob etwa auch senkrechte Spiegelflächen dazu gehören", sagt Wiegrebe. "Ganz grundsätzlich werden wir untersuchen, wie verzerrend sich akustische Spiegel auf die Objekt- und Raumwahrnehmung der Tiere auswirken."

Um einen neuartigen Mechanismus in der Entwicklung von Stammzellen geht es in einem Projekt, dem neben Professor Thomas Cremer vom Biozentrum der LMU auch ein englischer Forscher und zwei US-amerikanische Wissenschaftler angehören. Veränderungen in der Architektur des Zellkerns können sich auf die genetische Aktivität einer Zelle auswirken. Diese Mechanoregulation spielt auch bei der Differenzierung von Stammzellen in die verschiedenen Zelltypen des Körpers eine Rolle. "Wir wollen unter anderem die Veränderungen am Zellkern sowie deren Auswirkungen auf das genetische Material charakterisieren - und dabei mechanosensitive Gene identifizieren", berichtet Cremer.

"Ein weiteres Ziel ist, die mechanischen Eigenschaften des Zellkerns von Stammzellen im undifferenzierten Zustand und während der Differenzierung zu analysieren. Letztlich geht es darum, ein integriertes Modell der mechanosensitiven Genomregulation zu entwickeln, was nicht nur für die Grundlagenforschung, sondern etwa auch für die regenerative Medizin interessant sein sollte."

In einem dritten Projekt schließlich wird sich Professor Dirk Trauner vom Department für Chemie und Biochemie der LMU zusammen mit einem in den USA und einem in Großbritannien arbeitenden Kollegen mit der Verschaltung in Neuronalen Netzwerken beschäftigen. Denn noch ist weitgehend unbekannt, wie sich spezifische Verbindungen unter den Hunderten von Zelltypen im zentralen Nervensystem ausbilden. "Wir wollen nun diese sogenannte Zell-Zell-Adhäsion in der Entwicklung von Neuronalen Netzwerken mit Hilfe von photoschaltbaren Molekülen selbst steuern", berichtet Trauner. "Eine erst vor kurzem entdeckte Gen-Familie, die sogenannten Leucin-reichen Repeat Transmembranrezeptoren oder LRRTM, soll uns dabei helfen. Wir werden maskierte LRRTMs herstellen, die man in bestimmten Entwicklungsstufen des Nervensystems mit Licht aktivieren kann - um so die zeitliche Abfolge der Verschaltung zwischen den einzelnen Zellen zu studieren."

Ansprechpartner:
Professor Thomas Cremer
Biozentrum der LMU
Tel.: 089 / 2180 - 74329
Fax: 089 / 2180 - 74331
E-Mail: thomas.cremer@lrz.uni-muenchen.de
Professor Dirk Trauner
Tel.: 089 / 2180 - 77800
Fax: 089 / 2180 - 77972
E-Mail: dirk.trauner@cup.uni-muenchen.de
Privatdozent Dr. Lutz Wiegrebe
Biozentrum der LMU
Tel.: 089 / 2180 - 74314
E-Mail: lutzw@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://neuro.bio.lmu.de/AG_Grothe_Wiegrebe.htm
http://www.cup.uni-muenchen.de/oc/trauner/index.html
http://anthropologie.bio.lmu.de/forschung/humangenetik/index.html

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht »Die Oberfläche 2018« – Fünf Nominierungen gehen in die Endrunde
18.05.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht DFG fördert Entwicklung innovativer Forschungssoftware an der Universität Bremen
17.05.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics