Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

LMU-Forscher erhalten Förderung in Millionenhöhe: Neuronalen Netzen, Stammzellen und der Echoortung auf der Spur

01.04.2009
Drei "Research Grants" des "Human Frontier Science Programs (HFSP)" gehen in diesem Jahr an Teams, denen auch LMU-Forscher angehören.

In den Projekten geht es um die Verarbeitung akustischer Spiegel durch Fledermäuse, die Entwicklung von Neuronalen Netzwerken und die Auswirkung der Zellkernorganisation auf die Differenzierung von Stammzellen.

Die Fördersumme beträgt je Projekt rund 900.000 Euro für drei Jahre. Das "Human Frontier Science Program (HFSP)" fördert internationale Forschungskooperationen in den Lebenswissenschaften, die sich der Aufklärung komplexer Mechanismen lebender Systeme widmen.

Getragen wird das Programm unter anderen von Deutschland, Japan, Kanada, den USA und der Europäischen Union. Über HFSP werden in erster Linie Kooperationsprojekte gefördert, wobei sich nur Forscherteams bewerben können, denen Wissenschaftler aus mindestens zwei Ländern angehören. Die Kooperationspartner sollen Fragestellungen angehen, die nur im Team und mit interdisziplinärer Herangehensweise bewältigt werden können.

Unter der Leitung von Privatdozent Dr. Lutz Wiegrebe am Biozentrum der LMU wird sich ein deutsch-israelisches Forscherteam der Echoortung der Fledermäuse widmen. Die Tiere senden Ultraschall-Signale aus, die von festen Objekten reflektiert und dann als Echo wahrgenommen werden. Ein Sonderfall sind "akustische Spiegel", etwa Wasserflächen, die die Ultraschall-Signale selbst wieder reflektieren. Treffen diese dann etwa auf ein Beutetier kehrt das Echo zurück auf die Wasserfläche und wird dann zur Fledermaus zurückgespiegelt.

Weil der Tier zudem aber auch ein direktes Echo empfängt, treffen letztlich zwei unterschiedliche "Ansichten" desselben Objektes zusammen: Das Tier muss die Spiegelung erkennen und ausblenden. "Wir wollen unter anderem wissen, was die Fledermäuse als Wasser wahrnehmen und ob etwa auch senkrechte Spiegelflächen dazu gehören", sagt Wiegrebe. "Ganz grundsätzlich werden wir untersuchen, wie verzerrend sich akustische Spiegel auf die Objekt- und Raumwahrnehmung der Tiere auswirken."

Um einen neuartigen Mechanismus in der Entwicklung von Stammzellen geht es in einem Projekt, dem neben Professor Thomas Cremer vom Biozentrum der LMU auch ein englischer Forscher und zwei US-amerikanische Wissenschaftler angehören. Veränderungen in der Architektur des Zellkerns können sich auf die genetische Aktivität einer Zelle auswirken. Diese Mechanoregulation spielt auch bei der Differenzierung von Stammzellen in die verschiedenen Zelltypen des Körpers eine Rolle. "Wir wollen unter anderem die Veränderungen am Zellkern sowie deren Auswirkungen auf das genetische Material charakterisieren - und dabei mechanosensitive Gene identifizieren", berichtet Cremer.

"Ein weiteres Ziel ist, die mechanischen Eigenschaften des Zellkerns von Stammzellen im undifferenzierten Zustand und während der Differenzierung zu analysieren. Letztlich geht es darum, ein integriertes Modell der mechanosensitiven Genomregulation zu entwickeln, was nicht nur für die Grundlagenforschung, sondern etwa auch für die regenerative Medizin interessant sein sollte."

In einem dritten Projekt schließlich wird sich Professor Dirk Trauner vom Department für Chemie und Biochemie der LMU zusammen mit einem in den USA und einem in Großbritannien arbeitenden Kollegen mit der Verschaltung in Neuronalen Netzwerken beschäftigen. Denn noch ist weitgehend unbekannt, wie sich spezifische Verbindungen unter den Hunderten von Zelltypen im zentralen Nervensystem ausbilden. "Wir wollen nun diese sogenannte Zell-Zell-Adhäsion in der Entwicklung von Neuronalen Netzwerken mit Hilfe von photoschaltbaren Molekülen selbst steuern", berichtet Trauner. "Eine erst vor kurzem entdeckte Gen-Familie, die sogenannten Leucin-reichen Repeat Transmembranrezeptoren oder LRRTM, soll uns dabei helfen. Wir werden maskierte LRRTMs herstellen, die man in bestimmten Entwicklungsstufen des Nervensystems mit Licht aktivieren kann - um so die zeitliche Abfolge der Verschaltung zwischen den einzelnen Zellen zu studieren."

Ansprechpartner:
Professor Thomas Cremer
Biozentrum der LMU
Tel.: 089 / 2180 - 74329
Fax: 089 / 2180 - 74331
E-Mail: thomas.cremer@lrz.uni-muenchen.de
Professor Dirk Trauner
Tel.: 089 / 2180 - 77800
Fax: 089 / 2180 - 77972
E-Mail: dirk.trauner@cup.uni-muenchen.de
Privatdozent Dr. Lutz Wiegrebe
Biozentrum der LMU
Tel.: 089 / 2180 - 74314
E-Mail: lutzw@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://neuro.bio.lmu.de/AG_Grothe_Wiegrebe.htm
http://www.cup.uni-muenchen.de/oc/trauner/index.html
http://anthropologie.bio.lmu.de/forschung/humangenetik/index.html

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise