Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtschalter für Nervenzellen

06.04.2010
Max-Planck-Wissenschaftler revolutioniert die Neurobiologie und erhält dafür renommierten Wissenschaftspreis

Es klingt wie der Traum eines Neurobiologen: Ein Schalter, mit dem sich Nervenzellen nach Belieben an- und ausknipsen lassen. Drei Wissenschaftler haben im wahrsten Sinne des Wortes einen solchen Lichtschalter für Nervenzellen gefunden. Dafür wird ihnen nun eine besondere Ehrung zuteil: Ernst Bamberg, Direktor am Max-Planck-Institut für Biophysik, Georg Nagel von der Universität Würzburg und Peter Hegemann, Humboldt-Universität Berlin, erhalten den diesjährigen Wiley Prize der biomedizinischen Wissenschaften für die Entdeckung der außergewöhnlichen Eigenschaften des Grünalgenproteins Channelrhodopsin. Der Preis wird seit 2001 jährlich vergeben und zeichnet hervorragende Forschung in der Medizin und Biowissenschaften aus. Die Preisverleihung findet am 9. April an der Rockefeller University in New York statt.

Die Jury des Wiley Prize zeichnet die drei Forscher für ihre Entdeckung der so genannten Channelrhodopsine aus, einer Familie von lichtaktivierten Ionenkanälen. Der Einsatz dieser Proteine hat neue Möglichkeiten zur Untersuchung von Nervenzellen und Netzwerken in Kultur wie auch im Gehirn lebender Tiere geschaffen und das Forschungsgebiet der Optogenetik begründet. Einzelne Nervenzellen oder Nervennetzwerke können mit Licht gezielt elektrodenfrei an- und ausgeschaltet werden. Neben dem großen Wert dieser Entdeckung für die Grundlagenforschung könnten eines Tages Patienten mit neurodegenerativen Krankheiten wie Makuladegeneration, Parkinson und Epilepsie von der Entdeckung profitieren.

Licht schaltet Nervenzellen gezielt an und aus

Channelrhodopsine sind Kanalproteine in der Zellmembran und kommen in der einzelligen Grünalge Chlamydomonas reinhardtii vor. Sie ermöglichen es der Alge, Helligkeit wahrzunehmen und sich zum Licht hin oder davon weg zu bewegen. Fällt Licht auf die Proteine, werden sie durchlässig für positiv geladene Ionen. Diese strömen durch die geöffneten Kanäle in die Zelle strömen und lösen dadurch ein elektrisches Signal aus. Das elektrische Potenzial im Innern der Zelle wird von stark negativen Werten positiver, d.h. die Zelle wird depolarisiert. Natürlich vorkommende lichtaktivierte Ionenkanäle waren bis zu dieser Entdeckung in den Jahren 2002, 2003 unbekannt. Auf der Basis dieser bahnbrechenden Arbeiten ist es den Wissenschaftlern in Zusammenarbeit mit anderen Arbeitsgruppen gelungen, Channelrhodopsin auf molekulargenetischem Weg in Nerven- und Muskelzellen in Kultur wie auch im lebenden Tier einzuschleusen. Auch die lichtgetriebene Chlorid-Pumpe Halorhodopsin, die ursprünglich aus Archebakterien stammt und die das Zellpotenzial weiter ins Negative verschiebt, d.h. hyperpolarisiert, konnten Bamberg und Nagel wiederum in Zuammenarbeit mit anderen Wissenschaftlern in verschiedene Zelltypen in Kultur und im lebenden Fadenwurm C. elegans übertragen. Somit war es möglich die jeweiligen Zellen mit blauem Licht (Absorptionsmaximum Channelrhodopsin: 480 Nanometer) anzuschalten und mit gelbem Licht (Absorptionsmaximum Halorhodopsin: 570 Nanometer) abzuschalten. Und in C. elegans bestimmte Verhaltensweisen durch Licht zu stimulieren.

Der Beginn der Optogentik

Aus der Entdeckung und Anwendung der Channelrhodopsine und Halorhodopsin ist das sich schnell entwickelnde Gebiet der Optogenetik entstanden. Inzwischen setzen viele Forschergruppen die optogenetischen Werkzeuge auf unterschiedlichen Forschungsgebieten der Neurobiologie erfolgreich ein.

Die Geschichte der Entdeckung der lichtaktivierten Ionenkanäle ist ein Beispiel dafür, wie aus Grundlagenforschung neue Techniken bis hin zu Behandlungen für den Menschen entstehen können. Denn diese Kanäle eröffnen eine Fülle von Anwendungsmöglichkeiten. "Die Optogenetik revolutioniert momentan die neuro- und zellbiologische Forschung", ist Ernst Bamberg überzeugt. "Denn jetzt können wir erstmals ohne Elektroden und ohne jedwede chemische Modifizierung die Aktivität von Neuronen und Muskelzellen störungsfrei und mit bisher nicht erreichter hoher Ortsauflösung einfach durch Licht steuern."

Darüber hinaus könnte die Optogenetik in Zukunft auch medizinischen Nutzen haben. So haben Schweizer und US- amerikanische Forscher bereits 2006 und 2008 Jahren blinde Mäuse wieder sehend gemacht. Dazu brachten sie Channelrhodopsin in Nervenzellen der Netzhaut von Mäusen ein, die aufgrund eines Gendefekts keine Lichtsinneszellen ausbilden können. Die Tiere konnten nach dieser Behandlung zumindest wieder zwischen hell und dunkel unterscheiden. Die Wissenschaftler hoffen, dass auch Menschen mit einer Erkrankung der Netzhaut - der so genannten Makuladegeneration - durch eine Gentherapie mit Channelrhodopsinen zumindest einen Teil ihrer Sehkraft wieder erlangen. Aber nicht nur im Auge, auch im Gehirn könnten Nervenzellen mit optogenetischen Methoden behandelt werden. So könnten z. B. im Gehirn von Epilepsie- oder Parkinson-Patienten Nervenzellen mit Hilfe von lichtleitenden Glasfasern nach Bedarf kontrolliert "an- oder "abgeschaltet" werden, um die entsprechenden Krankheitsphänomene aufzuheben.

[RH]

Originalveröffentlichung:

Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.-M., Bamberg, E. und Hegemann, P.
Channelrhodopsin-1, A Light-Gated Proton Channel in Green Algae.
Science 296, 2395-2398 (2002)
Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. und Bamberg, E.
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Proc. Natl. Acad. Sci. 100, 13940-13945 (2003)
Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann P, Landmesser LT, Herlitze S
Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin.

Proc Natl Acad Sci USA 2005, 102:17816-17821.

Boyden, E.S., F. Zhang, E. Bamberg, G. Nagel, K. Deisseroth
Millisecond-timescale, genetically targeted optical control of neural activity.
Nature Neuroscience 8(9):1263-1268 (2005)
Zhang, F., Wang, L., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A. und Deisseroth, K.
Multimodal fast optical interrogation of neural circuitry
Nature 446, 633-639 (2007)
Nagel, G., M. Brauner, J.F. Liewald, N. Adeishvili, E. Bamberg, A. Gottschalk
Light-activation of Channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses.

Current Biology 15(24):2279-84 (2005)

Weitere Informationen erhalten Sie von:

Prof. Dr. Ernst Bamberg / Heidi Bergemann (Sekretariat)
Max-Planck-Institut für Biophysik, Frankfurt am Main
Tel.: +49 69 6303-2000/2001
E-Mail: secretary-bamberg@biophys.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics