Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht aus Quantenpunktlasern — Wie mikroskopische Streuprozesse die Stabilität der Lichtemission beeinflussen

04.06.2012
Der Karl-Scheel-Preis 2012 der Physikalischen Gesellschaft zu Berlin geht an Frau Privatdozentin Dr. Kathy Lüdge von der Technischen Universität Berlin

Im Mittelpunkt der Forschungen von Frau Lüdge steht die Modellierung von Quantenpunktlasern. Dies sind Halbleiterlaser, bei denen im Gegensatz zu konventionellen Halbleiterlasern das Licht nicht in einer kompletten zweidimensionalen Schicht, sondern nur in sehr kleinen in der Schicht enthaltenen pyramidalen Strukturen (Quantenpunkten) erzeugt wird.

Die Elektronen in den Quantenpunkten sind in allen drei Raumdimensionen in ihrer Bewegung eingeschränkt und können damit nur lokalisierte Zustände besetzen. Der Einsatz von Quantenpunktlasern sollte zu einer Verbesserung der Übertragungsgeschwindigkeit und zu einer Verkleinerung der optischen Komponenten führen.

Frau Lüdge untersucht nun insbesondere, wie die durch die Wechselwirkung geladener Teilchen, der Coulomb-Wechselwirkung, hervorgerufenen Elektronen-Streuprozesse in einem Quantenpunktlaser die Lichtemission aus dem Laser beeinflussen. Mit Hilfe von systematischen mikroskopischen Rechnungen der Vielteilchenwechselwirkung im Quantenpunktlaser werden zustandsabhängige Elektronenlebensdauern in den Quantenpunkt-Energieniveaus bestimmt.

Damit ist es möglich, die Dynamik sowie die spezifischen Modulationseigenschaften des Lasers möglichst realistisch zu simulieren. Darüber hinaus ermöglicht der mikroskopische Zugang auch eine Untersuchung dieser Eigenschaften in Abhängigkeit von der Größe und Zusammensetzung der Quantenpunkte, was wiederum eine Optimierung der Lasereigenschaften zulässt.

Die Physikalische Gesellschaft zu Berlin verleiht den Karl-Scheel-Preis 2012 an Frau Priv.-Doz. Dr. Kathy Lüdge „in Würdigung ihrer herausragenden Arbeiten zur Modellierung der Dynamik von Quantenpunktlaserstrukturen“. In der Begründung der Physikalischen Gesellschaft zu Berlin heißt es: „Frau Lüdge hat einen bahnbrechenden Forschungsbeitrag geleistet, welcher in höchst innovativer Weise Grundlagenforschung in nichtlinearer Dynamik mit anwendungsrelevanten Untersuchungen von optoelektronischen Halbleiterbauelementen mit großer Bedeutung für die nächste Generation der optischen Kommunikationstechnologien kombiniert. Es ist ihr gelungen, verschiedene aktive, aber disjunkte Forschungs-felder durch ihre Arbeiten zusammenzuführen und damit einen wissenschaftlichen Durchbruch zu erzielen. Erstens hat sie eine rein quantenmechanische mikroskopische Modellierung von Quantenpunktsystemen durchgeführt.

Zweitens hat sie daraus einfache (phäno-menologische) Ansätze zur Beschreibung von Experimenten zur Quantenpunktlaserdynamik abgeleitet. Drittens hat sie Methoden der Theorie nichtlinearer dynamischer Systeme und Bifurkationsanalyse eingesetzt. Frau Lüdge hat diese drei Ansätze miteinander verbunden und die Dynamik von Quantenpunktlaserstrukturen auf verschiedenen Ebenen der Modellhierarchie (von Vielteilcheneffekten bis hin zu Ratengleichungen) untersucht.“

Prof. Dr. Eckehard Schöll, Professor für Theoretische Physik und Sprecher des Sonderforschungsbereichs 910 „Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzepte“ an der Technischen Universität Berlin, betont: „Kathy Lüdge ist eine herausragende Nachwuchswissenschaftlerin. Erstens kann sie eine ganz außergewöhnliche Breite ihrer wissenschaftlichen Arbeiten vorweisen. Zuerst hat sie auf dem Gebiet der experimentellen Oberflächenphysik ihre Diplom- und Doktorarbeit vorgelegt.

Danach hat sie nicht nur die Arbeitsgruppe und das Forschungsgebiet gewechselt, sondern sogar die Forschungsrichtung von der Experimentalphysik hin zur Theoretischen Physik. Zweitens ist ihr Werdegang ein beeindruckendes Beispiel für die Vereinbarkeit von Familie und wissenschaftlicher Karriere. Sie hat sich bereits mit 35 Jahren in Theoretischer Physik habilitiert, obwohl sie nach ihrer Promotion auf einem völlig anderen Gebiet zwei jeweils einjährige Unterbrechungen auf Grund von Elternzeit nach der Geburt ihrer beiden Kinder (2004 und 2006) wahrgenommen hat. Als zweifache Mutter hat sie in den letzten Jahren eine ganz außergewöhnliche wissenschaftliche Produktivität auf dem Gebiet der theoretischen nichtlinearen Laserdynamik entfaltet.“

Dr. Kathy Lüdge ist seit kurzem Privatdozentin an der Technischen Universität Berlin, nachdem sie seit 2003 als wissenschaftliche Mitarbeiterin in der Arbeitsgruppe von Prof. Eckehard Schöll im Institut für Theoretische Physik der Technischen Universität Berlin gearbeitet hat. Seit einigen Jahren leitet sie dort sehr erfolgreich und selbständig die Arbeitsgruppe „Nichtlineare Laserdynamik“. Durch zahlreiche weltweit beachtete Veröffentlichungen in renommierten Fachzeitschriften, einen Forschungsaufenthalt in den USA, Vorträge auf internationalen Tagungen sowie die Herausgabe eines Buches über „Nichtlineare Laserdynamik: Von Quantenpunkten bis zur Kryptografie“ hat sich Kathy Lüdge bereits eine beachtliche wissenschaftliche Reputation erarbeitet. Sie gehört damit zum Kreis der vielversprechenden Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler in Berlin.

Im Rahmen der diesjährigen Karl-Scheel-Sitzung am Freitag, den 22. Juni 2012, ab 17:15 Uhr im Hörsaal des Magnus-Hauses, Am Kupfergraben 7, 10117 Berlin, berichtet Priv.-Doz. Dr. Kathy Lüdge in einem Vortrag mit dem Titel „Licht aus Quantenpunkt-Lasern — Wie beeinflussen mikroskopische Streuprozesse die Stabilität der Lichtemission?“ über ihre preiswürdigen Arbeiten und erhält im Anschluss an ihren Vortrag den Karl-Scheel-Preis 2012.

Das gesamte Programm der Veranstaltung kann unter http://www.pgzb.tu-berlin.de abgerufen werden. Zu dieser Veranstaltung laden wir Sie herzlich ein.

Die 1845 gegründete Physikalische Gesellschaft zu Berlin ist einer der ältesten wissenschaftlichen Vereine in Deutschland. Sie ist heute ein Regionalverband der Deutschen Physikalischen Gesellschaft und widmet sich der Verbreitung von physikalischer Forschung und Lehre, u. a. durch regelmäßige Vortragsveranstaltungen sowie durch die Vergabe verschiedener Preise an hervorragende Physiker.

Der Karl-Scheel-Preis wird für eine herausragende, in der Regel nach der Promotion entstandene wissenschaftliche Arbeit eines Mitgliedes der Gesellschaft vergeben. Dem Vermächtnis Karl Scheels folgend, wird der Preisträgerin oder dem Preisträger anlässlich eines Festkolloquiums (Karl-Scheel-Sitzung) die Karl-Scheel-Medaille sowie ein Preisgeld in Höhe von 5.000 € überreicht.

Für weitere Informationen stehen wir Ihnen gerne zur Verfügung.

Kontakt:
Physikalische Gesellschaft zu Berlin:
Prof. Dr. Holger Grahn
Geschäftsführer der Physikalischen Gesellschaft zu Berlin
Kontakt: htgrahn@pdi-berlin.de
http://www.pgzb.tu-berlin.de
Preisträgerin:
Priv.-Doz. Dr. Kathy Lüdge
Technische Universität Berlin
Institut für Theoretische Physik
Sekr. EW 7-1
Hardenbergstraße 36
10632 Berlin
Tel.: (030) 314-23002
Fax: (030) 314-21130
E-mail: luedge@physik.tu-berlin.de

Prof. Dr. Holger T. Grahn | Physikalische Gesellschaft zu Be
Weitere Informationen:
http://www.tu-berlin.de
http://www.pgzb.tu-berlin.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

nachricht EU-Förderung in Millionenhöhe für Regensburger Wissenschaftler
21.04.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik