Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

KIT wirbt zwei neue ERC Starting Grants der EU ein

24.06.2013
Kapillarsuspensionen ermöglichen, das Fließverhalten von Materialien gezielt einzustellen und neue Produkte zu entwickeln, wie Tinten für druckbare Elektronik oder mikroporöse Keramiken.

Mit solchen Suspensionen befasst sich eine Forschungsgruppe unter Leitung von Dr. Erin Koos. Um Mikrostrukturen, die wasserliebende und wasserabstoßende Eigenschaften vereinen, zur Hochdurchsatzuntersuchung von Zellen geht es in einer von Dr. Pavel Levkin geleiteten Forschungsgruppe. Mit diesen beiden Projekten hat das KIT nun je einen ERC Starting Independent Researcher Grant eingeworben.

Die Projekte erhalten eine Förderung von je rund 1,5 Millionen Euro, verteilt auf fünf Jahre. Mit dem Starting Independent Researcher Grant fördert der Europäische Forschungsrat (European Research Council – ERC) über das Programm „Ideen“ im 7. EU-Forschungsrahmenprogramm wegweisende Projekte von Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern. Ziel des Starting Grants, der als eine der begehrtesten Förderungen in Europa gilt, ist der Aufbau oder die Festigung eines unabhängigen exzellenten Forschungsteams. Der Starting Grant 2013 ist die sechste Ausschreibung. Insgesamt gingen mehr als 3 000 Anträge ein; nur rund ein Zehntel wird gefördert. Bereits bei vergangenen Ausschreibungen waren Wissenschaftler des KIT erfolgreich.

Die Forschungsgruppe „Capillary suspensions: a novel route for versatile, cost efficient and environmentally friendly material design (CapS)" unter Leitung von Dr. Erin Koos am Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT befasst sich mit neuartigen Suspensionen, die maßgeschneiderte, kostengünstige und umweltfreundliche Materialien ermöglichen. Auf Suspensionen, das heißt Stoffgemischen aus einer Flüssigkeit und darin schwebenden, fein verteilten Festkörpern, basieren vielfältige Materialien wie innovative Nanotechnologieprodukte, Beschichtungen und Klebemittel, aber auch Alltagsprodukte wie Lebensmittel und Kosmetika. Das Fließverhalten einer Suspension muss genau auf das Fertigungsverfahren sowie die gewünschten Eigenschaften des Produkts abgestimmt sein.

Sogenannte kapillare Suspensionen können das Materialdesign revolutionieren: Wird der kontinuierlichen Phase einer Suspension eine geringe Menge – weniger als ein Prozent – Zweitflüssigkeit zugegeben, verändern sich die rheologischen Merkmale, das heißt Fließeigenschaften, der Suspension deutlich: Aus einer dünnflüssigen, schwach elastischen Suspension wird eine gelartige Struktur mit stark elastischen Eigenschaften. Mit zunehmendem Zweitphasenanteil steigen Fließgrenze und Viskosität um mehrere Größenordnungen an. Dieser Übergang lässt sich mit der Ausbildung von Kapillarkräften zwischen den beiden Flüssigkeiten und dem Feststoff erklären: Bei Kontakt mit engen Röhren, Spalten oder Hohlräumen zeigen Flüssigkeiten ein besonderes Verhalten, das auf die Oberflächenspannung der Flüssigkeiten und die Grenzflächenspannung zwischen Flüssigkeiten und fester Oberfläche zurückzuführen ist.

Kapillare Suspensionen erlauben es, Fließeigenschaften gezielt einzustellen, Gemische zu stabilisieren, Phasenseparation zu verhindern und Zusatzstoffe zu sparen. Sie ermöglichen innovative Produkte, wie Tinten für druckbare Elektronik, die ohne herkömmliche Stabilisatoren wie Polymere oder Tenside auskommen, hochporöse, offenporige Sinterwerkstoffe für Filter, Katalysatoren und Wärmetauscher, Kunststofffilme mit geringem Weichmacheranteil oder fettreduzierte Brotaufstriche auf Wasserbasis, die keine Emulgatoren benötigen.

Die Helmholtz-Forschungsgruppe „Chemical Engineering of Biofunctional Materials", geleitet von Dr. Pavel Levkin am Institut für Toxikologie und Genetik (ITG) des KIT entwickelt eine neue Plattform zur Hochdurchsatzuntersuchung von lebenden Zellen. Das sogenannte Hochdurchsatzscreening, bei dem Zehntausende bis Millionen von genetischen, biochemischen oder pharmakologischen Tests automatisiert durchgeführt werden, beschleunigt sowohl die grundlegende biologische Forschung als auch die Entdeckung neuer Arzneimittelwirkstoffe. Assays mit lebenden Zellen machen rund die Hälfte aller Hochdurchsatzscreenings aus. Bisherige Methoden erfordern allerdings einen hohen Aufwand oder unterliegen verschiedenen Anwendungsbeschränkungen. Die Forschungsgruppe von Dr. Pavel Levkin setzt für das Hochdurchsatzscreening von Zellen neuartige Mikrostrukturen ein, die wasserabstoßende und wasserliebende Eigenschaften in sich vereinen.

Sogenannte superhydrophobe-superhydrophile Mikroarrays ermöglichen hochdichte Felder von mikrofeinen Tröpfchen (DropletMicroarrays) oder von mikrofeinen Hydrogelpads (HydrogelMicroarrays). Die neue Plattform verbindet wasserliebende Mikrofasern, auf denen sich feinste Tröpfchen ausbilden, mit wasserabstoßenden Mikrofasern, die als Barrieren zwischen den Tröpfchen fungieren. Auf dieser Struktur, die einem fein karierten Gewebe ähnelt, lassen sich auf engem Raum viele isolierte Tröpfchen aneinanderreihen, deren Größe und Form genau festlegen und sogar Miniaturkanäle anlegen. Jedes Tröpfchen dient quasi als winziges dreidimensionales Reagenzglas, in dem die Forscher Zellen gezielt untersuchen und biochemischen Einflüssen aussetzen können.

Die Plattform wird es erlauben, auf einem einzigen Mikroarray bis zu 300 000 Experimente gleichzeitig durchzuführen. Individuelle Zellexperimente lassen sich in komplett isolierten Tröpfchen an bestimmten Stellen des Mikroarrays vornehmen. Die hydrophoben Barrieren verhindern Kreuzkontaminationen und Zellwanderungen. Analog dazu entwickeln die Wissenschaftler eine Plattform zum Hochdurchsatzscreening von Zellen in 3D-Hydrogel-Mikropads.

Erin Koos studierte Ingenieurwissenschaften und promovierte am California Institute of Technology über das Fließverhalten von feuchten Schüttgütern. Seit 2009 ist sie als Postdoc in der Gruppe Angewandte Mechanik (AME) am Institut für Mechanische Verfahrenstechnik und Mechanik (MVM) des KIT tätig und befasst sich mit Kapillarkräften in Suspensionen.

Pavel Levkin studierte Chemie und Chemieingenieurwesen am Moscow Institute of Fine Chemical Technology und promovierte an der Universität Tübingen über neuartige chirale Selektoren und chirale Polymere. Er wirkte als Postdoc an der University of California, Berkeley, und leitet seit 2010 die Helmholtz University Group „Chemical Engineering of Biofunctional Materials“ am Institut für Toxikologie und Genetik (ITG) des KIT und am Lehrstuhl Angewandte Physikalische Chemie der Universität Heidelberg.

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 4195, Fax: +49 721 608 43658, E-Mail:schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Thematische Schwerpunkte der Forschung sind Energie, natürliche und gebaute Umwelt sowie Gesellschaft und Technik, von fundamentalen Fragen bis zur Anwendung. Mit rund 9000 Mitarbeiterinnen und Mitarbeitern, darunter knapp 6000 in Wissenschaft und Lehre, sowie 24 000 Studierenden ist das KIT eine der größten Forschungs- und Lehreinrichtungen Europas. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet
02.12.2016 | Universität zu Lübeck

nachricht Ohne erhöhtes Blutungsrisiko: Schlaganfall innovativ therapieren
02.12.2016 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie