Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HZDR-Forscher simulieren Elektronen in kosmischen Plasmajets

18.11.2013
Für den mit 10.000 US-Dollar dotierten Gordon-Bell-Preis der Association for Computing Machinery (ACM) wurden Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) nominiert.

Am Hochleistungsrechner TITAN haben sie die Bewegung von Milliarden Elektronen in Plasmajets simuliert und deren abgestrahltes Licht berechnet. Ihre Ergebnisse geben Einblick in Prozesse, die sich in vielen kosmischen Objekten wie Sternen, galaktischen Kernen und Neutronensternen abspielen.

Zusammen mit fünf weiteren Finalisten präsentieren die Dresdner Forscher ihre Ergebnisse am 20. November auf der Supercomputing-Tagung SC13 im amerikanischen Denver vor einer Fachjury, die anschließend den Preis verleiht.

„Wenn Wind über das Meer bläst, bilden sich Wellen“, beschreibt Michael Bussmann, Nachwuchsgruppenleiter am HZDR, ein bekanntes Phänomen. „Bei hohen Windgeschwindigkeiten verwirbeln sich Wasser und Wind, wodurch Gischt entsteht. Gischt ist somit ein turbulenter Mix aus Wasser und Luft. Ähnliches passiert im Weltall, wenn ein Stern heißes Gas ins Weltall schleudert.

Der dabei entstehende Jet aus heißem Plasma vermischt sich mit anderem Gas, das den Stern umgibt. Es entstehen turbulente Strömungen an der Grenze zwischen den beiden Gasen.“ Die Mitarbeiter der Nachwuchsgruppe „Computergestützte Strahlenphysik“ haben vor kurzem diese Vermischung zwischen Strömen heißen Gases, die sogenannte Kelvin-Helmholtz-Instabilität, mit Hilfe von Simulationen studiert. Plasmajets treten bei aktiven Galaxienkernen, Neutronensternen, schwarzen Löchern und vielen anderen Objekten im Weltall auf.

„Wir wollten die Kelvin-Helmholtz-Instabilität genau verstehen. Dazu haben wir etwas gemacht, was bisher kaum jemand versucht hat“, erklärt Bussmann. „Wir haben einen Plasmajet mit einer so hohen Auflösung simuliert, dass wir den Elektronen im Jet folgen konnten. Das allein benötigte eine enorme Rechenkraft, da wir fast hundert Milliarden Teilchen simulieren mussten. Aber wir waren noch nicht zufrieden.“ Selbst mit den größten und modernsten Teleskopen ist es nämlich unmöglich, einzelne Teilchen in einem solchen Jet zu sehen. Die HZDR-Wissenschaftler standen also vor der Frage, wie man ihre Ergebnisse mit Beobachtungen vergleichen kann. Bei ihrer Lösung machten sie sich zunutze, dass Elektronen Licht über ein breites Spektrum an Wellenlängen abstrahlen, wenn sie ihre Flugrichtung oder Geschwindigkeit ändern. Sie erweiterten ihren selbstentwickelten Simulationscode PIConGPU um die Fähigkeit, aus der Bewegung der Elektronen das in alle Richtungen abgestrahlte Licht zu berechnen.

„Das abgestrahlte Licht können wir mit etwas Glück mit Teleskopen von der Erde aus sehen“, erläutert der Physiker. „Wir können also etwas simulieren, was man auf der Erde messen kann. Allerdings ist der hierfür benötigte Rechenaufwand gewaltig.“ Für die Milliarden Elektronen in der Simulation musste das abgestrahlte Licht einzeln berechnet werden – und zwar für hundert verschiedene Richtungen. Daher nutzte das HZDR-Team im Juni dieses Jahres den damals rechenstärksten Supercomputer der Welt, TITAN am Oak Ridge National Laboratory, für ihre Rechnungen. PIConGPU rechnete dafür auf 18.000 Grafikkarten über 16 Stunden lang. Nur wenige Simulationscodes können sich eine solch gewaltige Rechenkraft zunutze machen. Simulationen, denen dies am effizientesten gelingt, werden einmal pro Jahr mit dem Gordon Bell Preis für herausragende Leistungen im Bereich des Hochleistungsrechnens ausgezeichnet, für den sich die HZDR-Wissenschaftler nun nominieren konnten.

„Ob wir gewonnen haben, erfahren wir auf der Supercomputing Conference 2013 Mitte November in Denver. Unter den sechs Finalisten zu sein ist aber bereits eine große Ehre. Ich bin sehr stolz auf das, was alle Beteiligten geleistet haben. Das war tolle Teamarbeit!“, betont Michael Bussmann. „Mit den Simulationen auf TITAN haben wir einzigartige wissenschaftliche Daten gewonnen. Es ist eine so große Menge, dass wir noch immer dabei sind sie auszuwerten. Alle im Team sind sehr gespannt, was wir finden werden.“ Denn Plasmen spielen eine zentrale Rolle in den Forschungsthemen der Nachwuchsgruppe.

So wollen die HZDR-Forscher mit Hilfe analytischer Modelle und Simulationen die Eigenschaften lasergetriebener Strahlungsquellen genauer verstehen. Mit diesen Strahlungsquellen könnten kompakte Beschleuniger für die Krebstherapie mit Partikeln entwickelt werden. Hochintensive Laserpulse können Materie ionisieren, das heißt die Atome in Ionen und Elektronen aufteilen. Trennt man die Elektronen von den Ionen, treten starke Felder auf, die zur Beschleunigung genutzt werden. Die vom Laser derart ionisierte Materie nennt man Plasma. Bei ihrer Modellierung ist es wichtig, die vielfältigen, in den Plasmen auftretenden physikalischen Prozesse zu verstehen.

_Weitere Informationen:
Dr. Michael Bussmann
Institut für Strahlenphysik im HZDR
Tel.: 0351 260 - 2616
m.bussmann@hzdr.de
_Medienkontakt:
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260 - 2450 oder 0160 969 288 56 | c.bohnet@hzdr.de | www.hzdr.de
_Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
* Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
* Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
* Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit einzigartigen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon ca. 450 Wissenschaftler inklusive 160 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops