Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HZDR-Forscher erhält internationalen Nachwuchspreis für Hochleistungsrechnen

07.11.2016

Bei seinen Simulationen müssen selbst leistungsstärkste Computer auf Hochtouren laufen. Immerhin modellieren sie, was passiert, wenn ein Laserstrahl mit hunderten Billionen Watt auf eine Folie trifft. Da dieser Vorgang, bei dem ein Gemisch aus Milliarden von Elektronen und Ionen – ein Hoch-Energie-Plasma – entsteht, nur wenige Femtosekunden dauert, ist für die dreidimensionalen Modelle eine gewaltige Rechenkraft nötig – und ein effizienter Code. Diesen konnte Axel Hübl mit weiteren HZDR-Nachwuchsphysikern entwickeln. Für seine Leistungen auf dem Gebiet des Hochleistungsrechnens erhält er nun das George Michael Memorial HPC Fellowship, das mit 5.000 US-Dollar dotiert ist.

Es begann alles schon im zweiten Semester. 2009 stieß Axel Hübl, damals noch Physik-Student an der TU Dresden, zu der Nachwuchsgruppe „Computergestützte Strahlenphysik“ am Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Ein Jahr zuvor hatte das Team um Dr. Michael Bussmann die erste Version des Codes „PIConGPU“ geschrieben. Schritt für Schritt entwickelten die Nachwuchsforscher die Software weiter, bis sie schließlich beim heute leistungsfähigsten Simulationsprogramm der Laser-Plasmaphysik ankamen.


Axel Hübl vom HZDR-Institut für Strahlenphysik

HZDR / R. Weisflog

Einen wichtigen Beitrag lieferte dabei Axel Hübl: „Mit unserem Code können wir alle Teilchen eines Plasmas mit über 100 Milliarden Elektronen und Ionen verfolgen und ihren Einfluss auf das System berechnen. Unsere Software nutzt dafür die sogenannte ‚Particle-in-Cell‘-Methode (PIC), die wir als Open-Source weltweit Forschern zur Verfügung stellen und gemeinsam verbessern.“

„Das Programm beschreibt die Wechselwirkung geladener Teilchen, zum Beispiel Elektronen und Ionen, mit elektromagnetischen Feldern in einem virtuellen räumlichen Gitter über die Lösung von Differentialgleichungen“, erläutert Axel Hübl, der derzeit am HZDR und der TU Dresden promoviert. „Dadurch erfahren wir, wie sich die Partikel in den Zellen des dreidimensionalen Gitters bewegen und auf die Felder wirken.“

Anders als sonst üblich greift der Code allerdings nicht nur auf die normalen Hauptprozessoren, das Herzstück eines jeden Computers, zurück, sondern auch auf sogenannte GPUs – die Recheneinheiten von Grafikkarten. „Da sie Rechenschritte parallel ausführen, können wir die Prozesse wesentlich schneller verarbeiten.“

Von Rossendorf zum TITAN
Um aber selbst bei den rechenstärksten Computern der Welt die maximale Leistung abzurufen, müssen die Grafikkarten möglichst unabhängig voneinander arbeiten. Das ist besonders bei der Datenweitergabe ein Problem, da hier Wartezeiten entstehen, die den Großteil der GPU-Leistung verpuffen lassen. „Wir konnten dafür eine relativ elegante Lösung finden“, erzählt Hübl. „Schon bei der Übertragung zu anderen Karten beginnen neue Berechnungen.“ Durch solche Schritte konnten die Physiker den Code auch für Simulationen an Supercomputern fit machen. Das Team erhielt dadurch im letzten Jahr erneut Zugang zum derzeit drittschnellsten Computer der Welt – dem Hochleistungsrechner TITAN des Oak Ridge National Laboratory im US-Bundesstaat Tennessee.

„Dank der gewaltigen Rechenkraft konnten wir den Beschuss eines kugelförmigen Targets mit einem Laser modellieren und so die komplette Beschleunigung der Ionenstrahlen dreidimensional simulieren“, beschreibt Hübl die Untersuchung. „Bisher waren aufgrund begrenzter Rechenkraft nur zweidimensionale Berechnungen möglich. Durch die Simulation können wir nun die Effekte in allen Dimensionen beschreiben, die sich bei der Laser-Teilchenbeschleunigung abspielen, und unsere neuen Beschleuniger viel besser verstehen.“ Ein wichtiger Schritt – nicht nur für die Laser-Plasmaphysik, sondern auch für die Tumorbehandlung mit Partikelstrahlen. Bislang benötigt die Medizin riesige Teilchenbeschleuniger, um Protonen oder Ionen im Kampf gegen den Krebs einsetzen zu können.

Die Datenflut bewältigen
Eine Alternative ist die Beschleunigung per Laserlicht, was die Anlagen kompakter und damit ihren Einzug in den klinischen Alltag wahrscheinlicher machen würde. „Dafür müssen wir aber zuerst die grundlegenden physikalischen Effekte genau verstehen“, erklärt Axel Hübl. Die Modelle, die er mit seinen Kollegen entwickelt, liefern entscheidende Informationen. So viele, dass der Physiker für das Experiment am TITAN einen weiteren Supercomputer einsetzen musste, um die Datenflut sinnvoll verarbeiten und interpretieren zu können: „Die meisten Informationen haben wir analysiert, solange die Daten noch auf der GPU waren, um kostspieligen Speicherplatz zu sparen. Trotzdem haben wir innerhalb von fünf Tagen drei Petabyte an Daten gesammelt.“ Das ist eine drei mit 15 Nullen – oder etwa 30.000 beschriebene Blu-ray Discs. „Weitere Analysen liefen parallel auf einem angegliederten Supercomputer. Die Datenbeschreibung haben wir gleich noch in einem offenen Austauschformat für andere Wissenschaftler standardisiert.“

Diese Leistungen haben die Association for Computing Machinery (ACM) und das Institute of Electrical and Electronics Engineers (IEEE-CS) überzeugt. Die beiden Organisationen verleihen Axel Hübl das George Michael Memorial HPC Fellowship, mit dem seit 2007 einmal pro Jahr Doktoranden ausgezeichnet werden, die hervorragende Ergebnisse auf dem Gebiet des Hochleistungsrechnens erzielen. Der Dresdner Forscher ist damit der zweite Deutsche überhaupt, der den Preis erhält. Die Auszeichnung soll an den Computerphysiker George Michael erinnern – einer der ersten Forscher, der Hochleistungsrechner eingesetzt hat, um physikalische Fragestellungen zu lösen. Der Preis wird auf der International Conference for High Performance Computing, Networking, Storage and Analysis SC16 vergeben, die vom 13. bis 18. November Experten aus der ganzen Welt nach Salt Lake City im US-Bundesstaat Utah zieht.

Weitere Informationen:
Axel Hübl
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-3582
E-Mail: a.huebl@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat fünf Standorte in Dresden, Grenoble, Freiberg, Leipzig und Schenefeld und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/supercomputer

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Berührungslose Ladesysteme
16.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Studenten nehmen mit Frühwarnsystem für Geisterfahrer an internationalem Wettbewerb in Peking teil
15.11.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte