Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

HZDR-Forscher erhält internationalen Nachwuchspreis für Hochleistungsrechnen

07.11.2016

Bei seinen Simulationen müssen selbst leistungsstärkste Computer auf Hochtouren laufen. Immerhin modellieren sie, was passiert, wenn ein Laserstrahl mit hunderten Billionen Watt auf eine Folie trifft. Da dieser Vorgang, bei dem ein Gemisch aus Milliarden von Elektronen und Ionen – ein Hoch-Energie-Plasma – entsteht, nur wenige Femtosekunden dauert, ist für die dreidimensionalen Modelle eine gewaltige Rechenkraft nötig – und ein effizienter Code. Diesen konnte Axel Hübl mit weiteren HZDR-Nachwuchsphysikern entwickeln. Für seine Leistungen auf dem Gebiet des Hochleistungsrechnens erhält er nun das George Michael Memorial HPC Fellowship, das mit 5.000 US-Dollar dotiert ist.

Es begann alles schon im zweiten Semester. 2009 stieß Axel Hübl, damals noch Physik-Student an der TU Dresden, zu der Nachwuchsgruppe „Computergestützte Strahlenphysik“ am Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Ein Jahr zuvor hatte das Team um Dr. Michael Bussmann die erste Version des Codes „PIConGPU“ geschrieben. Schritt für Schritt entwickelten die Nachwuchsforscher die Software weiter, bis sie schließlich beim heute leistungsfähigsten Simulationsprogramm der Laser-Plasmaphysik ankamen.


Axel Hübl vom HZDR-Institut für Strahlenphysik

HZDR / R. Weisflog

Einen wichtigen Beitrag lieferte dabei Axel Hübl: „Mit unserem Code können wir alle Teilchen eines Plasmas mit über 100 Milliarden Elektronen und Ionen verfolgen und ihren Einfluss auf das System berechnen. Unsere Software nutzt dafür die sogenannte ‚Particle-in-Cell‘-Methode (PIC), die wir als Open-Source weltweit Forschern zur Verfügung stellen und gemeinsam verbessern.“

„Das Programm beschreibt die Wechselwirkung geladener Teilchen, zum Beispiel Elektronen und Ionen, mit elektromagnetischen Feldern in einem virtuellen räumlichen Gitter über die Lösung von Differentialgleichungen“, erläutert Axel Hübl, der derzeit am HZDR und der TU Dresden promoviert. „Dadurch erfahren wir, wie sich die Partikel in den Zellen des dreidimensionalen Gitters bewegen und auf die Felder wirken.“

Anders als sonst üblich greift der Code allerdings nicht nur auf die normalen Hauptprozessoren, das Herzstück eines jeden Computers, zurück, sondern auch auf sogenannte GPUs – die Recheneinheiten von Grafikkarten. „Da sie Rechenschritte parallel ausführen, können wir die Prozesse wesentlich schneller verarbeiten.“

Von Rossendorf zum TITAN
Um aber selbst bei den rechenstärksten Computern der Welt die maximale Leistung abzurufen, müssen die Grafikkarten möglichst unabhängig voneinander arbeiten. Das ist besonders bei der Datenweitergabe ein Problem, da hier Wartezeiten entstehen, die den Großteil der GPU-Leistung verpuffen lassen. „Wir konnten dafür eine relativ elegante Lösung finden“, erzählt Hübl. „Schon bei der Übertragung zu anderen Karten beginnen neue Berechnungen.“ Durch solche Schritte konnten die Physiker den Code auch für Simulationen an Supercomputern fit machen. Das Team erhielt dadurch im letzten Jahr erneut Zugang zum derzeit drittschnellsten Computer der Welt – dem Hochleistungsrechner TITAN des Oak Ridge National Laboratory im US-Bundesstaat Tennessee.

„Dank der gewaltigen Rechenkraft konnten wir den Beschuss eines kugelförmigen Targets mit einem Laser modellieren und so die komplette Beschleunigung der Ionenstrahlen dreidimensional simulieren“, beschreibt Hübl die Untersuchung. „Bisher waren aufgrund begrenzter Rechenkraft nur zweidimensionale Berechnungen möglich. Durch die Simulation können wir nun die Effekte in allen Dimensionen beschreiben, die sich bei der Laser-Teilchenbeschleunigung abspielen, und unsere neuen Beschleuniger viel besser verstehen.“ Ein wichtiger Schritt – nicht nur für die Laser-Plasmaphysik, sondern auch für die Tumorbehandlung mit Partikelstrahlen. Bislang benötigt die Medizin riesige Teilchenbeschleuniger, um Protonen oder Ionen im Kampf gegen den Krebs einsetzen zu können.

Die Datenflut bewältigen
Eine Alternative ist die Beschleunigung per Laserlicht, was die Anlagen kompakter und damit ihren Einzug in den klinischen Alltag wahrscheinlicher machen würde. „Dafür müssen wir aber zuerst die grundlegenden physikalischen Effekte genau verstehen“, erklärt Axel Hübl. Die Modelle, die er mit seinen Kollegen entwickelt, liefern entscheidende Informationen. So viele, dass der Physiker für das Experiment am TITAN einen weiteren Supercomputer einsetzen musste, um die Datenflut sinnvoll verarbeiten und interpretieren zu können: „Die meisten Informationen haben wir analysiert, solange die Daten noch auf der GPU waren, um kostspieligen Speicherplatz zu sparen. Trotzdem haben wir innerhalb von fünf Tagen drei Petabyte an Daten gesammelt.“ Das ist eine drei mit 15 Nullen – oder etwa 30.000 beschriebene Blu-ray Discs. „Weitere Analysen liefen parallel auf einem angegliederten Supercomputer. Die Datenbeschreibung haben wir gleich noch in einem offenen Austauschformat für andere Wissenschaftler standardisiert.“

Diese Leistungen haben die Association for Computing Machinery (ACM) und das Institute of Electrical and Electronics Engineers (IEEE-CS) überzeugt. Die beiden Organisationen verleihen Axel Hübl das George Michael Memorial HPC Fellowship, mit dem seit 2007 einmal pro Jahr Doktoranden ausgezeichnet werden, die hervorragende Ergebnisse auf dem Gebiet des Hochleistungsrechnens erzielen. Der Dresdner Forscher ist damit der zweite Deutsche überhaupt, der den Preis erhält. Die Auszeichnung soll an den Computerphysiker George Michael erinnern – einer der ersten Forscher, der Hochleistungsrechner eingesetzt hat, um physikalische Fragestellungen zu lösen. Der Preis wird auf der International Conference for High Performance Computing, Networking, Storage and Analysis SC16 vergeben, die vom 13. bis 18. November Experten aus der ganzen Welt nach Salt Lake City im US-Bundesstaat Utah zieht.

Weitere Informationen:
Axel Hübl
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-3582
E-Mail: a.huebl@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat fünf Standorte in Dresden, Grenoble, Freiberg, Leipzig und Schenefeld und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/supercomputer

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationen in der Bionik gesucht!
18.01.2018 | VDI Verein Deutscher Ingenieure e. V.

nachricht Fraunhofer HHI erhält AIS Technology Innovation Award 2018 für 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie