Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochpräzise Fertigungstechnologie für lichtoptische Komponenten

08.08.2011
Wissenschaft und Wirtschaft kooperieren in einem neuen, von der Bayerischen Forschungsstiftung geförderten Projekt

Für Innovationen in der Solartechnologie, der LED-Beleuchtungstechnik und der Automobiltechnik gewinnen lichtoptische Komponenten eine immer stärkere Bedeutung. Gefragt sind neue leistungsstarke Linsensysteme, beispielsweise für Frontscheinwerfer von Automobilen oder für Photovoltaik-Anlagen, die das Sonnenlicht zentral bündeln und in dieser Form für die Stromgewinnung nutzen. Die Weiterentwicklung der dazu notwendigen Fertigungstechnologie ist das Ziel des Forschungsvorhabens FlexiPlant, das von der Bayerischen Forschungsstiftung gefördert wird.

Am 1. August 2011 fiel der Startschuss für dieses Projekt, in dem die Universität Bayreuth und drei Industriepartner zusammenarbeiten: die Füller Glastechnologie Vertriebs GmbH in Spiegelau, die Reinhold Seiz Ingenieurbüro GmbH in Floss und die EGLASS Production and Trade GmbH in Buchholz. Das Projekt hat eine Laufzeit von zwei Jahren. Von den veranschlagten Gesamtkosten in Höhe von 563.000 Euro werden 281.600 Euro von der Bayerischen Forschungsstiftung übernommen. Konsortialführer ist die Universität Bayreuth.

Langjährige Erfahrungen mit Industriekooperationen

Der Lehrstuhl für Werkstoffverarbeitung an der Universität Bayreuth übernimmt bei den anstehenden Forschungs- und Entwicklungsarbeiten eine tragende Rolle: Prof. Dr. Monika Willert-Porada und Dr.-Ing. Thorsten Gerdes verfügen hier über ein international ausgewiesenes Know-how in der Glasforschung, das sie in das neue Projekt einbringen werden. Dabei können sie auf langjährige Erfahrungen im Bayerischen Forschungsverbund FORGLAS und in einer großen Zahl von Industriekooperationen zurückgreifen. So wurde zusammen mit der Firma Füller GTV GmbH eine Schmelztechnologie – eine sog. Mini-Melter-Technologie – entwickelt, die sich an der Universität Bayreuth in vielfältigen Glasforschungsprojekten bewährt hat.

Die Herausforderung: Glas-Preformen mit speziellen Eigenschaftsprofilen

Im Projekt FlexiPlant wird diese Mini-Melter-Technologie mit dem Ziel weiterentwickelt, die Fertigung lichtoptischer Komponenten optimal zu unterstützen. Dabei richtet sich das Interesse vor allem auf die Herstellung von Glas-Preformen für lichtoptische Komponenten. Hierbei handelt es sich um Rohlinge, die mithilfe eines weiteren Industrieverfahrens – dem Präzisionsblankpressen – zu hochwertigen Linsensystemen und anderen Endprodukten verarbeitet werden sollen.

Ein besonders wichtiger Aspekt: Die im Schmelzverfahren hergestellten Rohlinge sollen bereits spezielle Eigenschaftsprofile mitbringen, so dass keine mechanische Nachbearbeitung nötig ist. Sie sollen direkt, ohne einen solchen kostenaufwändigen Zwischenschritt, von den Präzisionsblankpressen übernommen werden können. Das Präzisionsblankpressen ist ein Kompetenzfeld der Hochschule Deggendorf, mit der die Universität Bayreuth derzeit eine Kooperation im Bereich heißer Glastechnologie aufbaut.

Technologische Weiterentwicklungen des Mini-Melter-Verfahrens

Damit die Glas-Preformen die gewünschten Eigenschaftsprofile mitbringen, wenn sie aus dem Schmelzverfahren hervorgehen, muss der Bayreuther Mini-Melter technologisch weiterentwickelt werden. Gefordert ist vor allem eine weitreichende Flexibilität. Verschiedene Glassorten müssen auf einem gleichbleibend hohen Qualitätsniveau bearbeitet werden können. Selbst wenn verschiedene Glassorten im regelmäßigen Wechsel zum Einsatz kommen, darf die lichtoptische Qualität der erzeugten Rohlinge nicht leiden. Die im Schmelzverfahren hergestellten Rohlinge müssen unabhängig von Größe und Glassorte absolut blasenfrei und frei von lichtbrechenden Fremdpartikeln sein. Und nicht zuletzt soll die gesamte Schmelzanlage über lange Zeiträume hinweg zuverlässig arbeiten, mit einem minimalen Energie-, Bedienungs- und Wartungsaufwand.

„Wir freuen uns darauf, das in Bayreuth erfolgreich mitentwickelte Schmelzverfahren in diese Richtung optimieren zu können. Die dafür nötigen Schritte sind für uns eine echte Herausforderung“, erklärt Dr.-Ing. Thorsten Gerdes, der die Bayreuther Projektarbeiten koordiniert. „Beispielsweise müssen wir für den Schmelzvorgang verbesserte feuerfeste keramische Glaskontaktwerkstoffe entwickeln, damit Rohlinge mit der angestrebten lichtoptischen Top-Qualität entstehen. Zudem werden wir einige spezielle Anlagenfunktionen einrichten. Damit betreten wir Neuland auf dem Gebiet der Schmelztechnologie in kleinen Schmelzanlagen von ca. 1t/Tag.“

Kooperationsprojekte mit dem Technologie Zentrum Spiegelau

Sobald die Bayreuther Wissenschaftler das Herstellungsverfahren entwickelt haben, das die ebenso hohen wie spezialisierten Anforderungen erfüllt, wird das Know-how in Kooperationsprojekten mit dem Technologie Zentrum Spiegelau eingesetzt. Hier soll das Schmelzverfahren implementiert und in Verbindung mit Präzisionsblankpressen genutzt werden, um technische Glasprodukte wie hochwertige Linsen herzustellen. Träger des TZ Spiegelau ist die Hochschule Deggendorf.

Kontaktadresse für weitere Informationen:

Prof. Dr. Monika Willert-Porada
Universität Bayreuth
95440-Bayreuth
Telefon: +49 (0)921 / 55-7200, -7201
E-Mail: monika.willert-porada@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen