Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochpräzise Fertigungstechnologie für lichtoptische Komponenten

08.08.2011
Wissenschaft und Wirtschaft kooperieren in einem neuen, von der Bayerischen Forschungsstiftung geförderten Projekt

Für Innovationen in der Solartechnologie, der LED-Beleuchtungstechnik und der Automobiltechnik gewinnen lichtoptische Komponenten eine immer stärkere Bedeutung. Gefragt sind neue leistungsstarke Linsensysteme, beispielsweise für Frontscheinwerfer von Automobilen oder für Photovoltaik-Anlagen, die das Sonnenlicht zentral bündeln und in dieser Form für die Stromgewinnung nutzen. Die Weiterentwicklung der dazu notwendigen Fertigungstechnologie ist das Ziel des Forschungsvorhabens FlexiPlant, das von der Bayerischen Forschungsstiftung gefördert wird.

Am 1. August 2011 fiel der Startschuss für dieses Projekt, in dem die Universität Bayreuth und drei Industriepartner zusammenarbeiten: die Füller Glastechnologie Vertriebs GmbH in Spiegelau, die Reinhold Seiz Ingenieurbüro GmbH in Floss und die EGLASS Production and Trade GmbH in Buchholz. Das Projekt hat eine Laufzeit von zwei Jahren. Von den veranschlagten Gesamtkosten in Höhe von 563.000 Euro werden 281.600 Euro von der Bayerischen Forschungsstiftung übernommen. Konsortialführer ist die Universität Bayreuth.

Langjährige Erfahrungen mit Industriekooperationen

Der Lehrstuhl für Werkstoffverarbeitung an der Universität Bayreuth übernimmt bei den anstehenden Forschungs- und Entwicklungsarbeiten eine tragende Rolle: Prof. Dr. Monika Willert-Porada und Dr.-Ing. Thorsten Gerdes verfügen hier über ein international ausgewiesenes Know-how in der Glasforschung, das sie in das neue Projekt einbringen werden. Dabei können sie auf langjährige Erfahrungen im Bayerischen Forschungsverbund FORGLAS und in einer großen Zahl von Industriekooperationen zurückgreifen. So wurde zusammen mit der Firma Füller GTV GmbH eine Schmelztechnologie – eine sog. Mini-Melter-Technologie – entwickelt, die sich an der Universität Bayreuth in vielfältigen Glasforschungsprojekten bewährt hat.

Die Herausforderung: Glas-Preformen mit speziellen Eigenschaftsprofilen

Im Projekt FlexiPlant wird diese Mini-Melter-Technologie mit dem Ziel weiterentwickelt, die Fertigung lichtoptischer Komponenten optimal zu unterstützen. Dabei richtet sich das Interesse vor allem auf die Herstellung von Glas-Preformen für lichtoptische Komponenten. Hierbei handelt es sich um Rohlinge, die mithilfe eines weiteren Industrieverfahrens – dem Präzisionsblankpressen – zu hochwertigen Linsensystemen und anderen Endprodukten verarbeitet werden sollen.

Ein besonders wichtiger Aspekt: Die im Schmelzverfahren hergestellten Rohlinge sollen bereits spezielle Eigenschaftsprofile mitbringen, so dass keine mechanische Nachbearbeitung nötig ist. Sie sollen direkt, ohne einen solchen kostenaufwändigen Zwischenschritt, von den Präzisionsblankpressen übernommen werden können. Das Präzisionsblankpressen ist ein Kompetenzfeld der Hochschule Deggendorf, mit der die Universität Bayreuth derzeit eine Kooperation im Bereich heißer Glastechnologie aufbaut.

Technologische Weiterentwicklungen des Mini-Melter-Verfahrens

Damit die Glas-Preformen die gewünschten Eigenschaftsprofile mitbringen, wenn sie aus dem Schmelzverfahren hervorgehen, muss der Bayreuther Mini-Melter technologisch weiterentwickelt werden. Gefordert ist vor allem eine weitreichende Flexibilität. Verschiedene Glassorten müssen auf einem gleichbleibend hohen Qualitätsniveau bearbeitet werden können. Selbst wenn verschiedene Glassorten im regelmäßigen Wechsel zum Einsatz kommen, darf die lichtoptische Qualität der erzeugten Rohlinge nicht leiden. Die im Schmelzverfahren hergestellten Rohlinge müssen unabhängig von Größe und Glassorte absolut blasenfrei und frei von lichtbrechenden Fremdpartikeln sein. Und nicht zuletzt soll die gesamte Schmelzanlage über lange Zeiträume hinweg zuverlässig arbeiten, mit einem minimalen Energie-, Bedienungs- und Wartungsaufwand.

„Wir freuen uns darauf, das in Bayreuth erfolgreich mitentwickelte Schmelzverfahren in diese Richtung optimieren zu können. Die dafür nötigen Schritte sind für uns eine echte Herausforderung“, erklärt Dr.-Ing. Thorsten Gerdes, der die Bayreuther Projektarbeiten koordiniert. „Beispielsweise müssen wir für den Schmelzvorgang verbesserte feuerfeste keramische Glaskontaktwerkstoffe entwickeln, damit Rohlinge mit der angestrebten lichtoptischen Top-Qualität entstehen. Zudem werden wir einige spezielle Anlagenfunktionen einrichten. Damit betreten wir Neuland auf dem Gebiet der Schmelztechnologie in kleinen Schmelzanlagen von ca. 1t/Tag.“

Kooperationsprojekte mit dem Technologie Zentrum Spiegelau

Sobald die Bayreuther Wissenschaftler das Herstellungsverfahren entwickelt haben, das die ebenso hohen wie spezialisierten Anforderungen erfüllt, wird das Know-how in Kooperationsprojekten mit dem Technologie Zentrum Spiegelau eingesetzt. Hier soll das Schmelzverfahren implementiert und in Verbindung mit Präzisionsblankpressen genutzt werden, um technische Glasprodukte wie hochwertige Linsen herzustellen. Träger des TZ Spiegelau ist die Hochschule Deggendorf.

Kontaktadresse für weitere Informationen:

Prof. Dr. Monika Willert-Porada
Universität Bayreuth
95440-Bayreuth
Telefon: +49 (0)921 / 55-7200, -7201
E-Mail: monika.willert-porada@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

nachricht 1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)
05.12.2016 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik