Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helmholtz-Preis für das „neue“ Ampere

31.03.2014

Wichtigster Preis der Metrologie geht an PTB-Wissenschaftler für die überprüfbare Realisierung des Ampere mithilfe von Naturkonstanten

Das „neue“ Ohm und das „neue“ Volt gibt es schon. Allerdings sind sie bisher nicht wirklich im internationalen System der Einheiten (SI) verankert. Das soll sich grundlegend ändern: Jetzt kommt das „neue“ Ampere.


Diese Halbleiterstruktur kann einzelne Elektronen und deren Ladung messen. Zu sehen sind vier Einzelelektronen-Pumpen. Mit drei Einzelelektronen-Detektoren werden die gepumpten Elektronen detektiert. Abbildung: PTB

Die Basiseinheit der Stromstärke lässt sich damit auf jene Naturkonstante zurückführen, die im „neuen“ SI dafür vorgesehen ist: die elektrische Ladung eines einzelnen Elektrons. Rechtzeitig vor den vielleicht entscheidenden Beschlüssen auf der Internationalen Konferenz für Maß und Gewicht im November dieses Jahres gelang es einer Gruppe von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB), ein Stromstärkenormal zu entwickeln, das nicht nur einen Einzelelektronenstrom erzeugt, sondern ihn auch gleichzeitig unabhängig misst.

Für diesen wichtigen Schritt bekommen die Wissenschaftler um Hans Werner Schumacher jetzt den Hermann-von-Helmholtz-Preis. Der Preis ist mit 20 000 Euro dotiert und gilt als eine der international bedeutendsten Auszeichnungen in der Welt der Metrologie, der Wissenschaft vom genauen Messen.

Das Ampere ist ein Problemfall: Obwohl Basiseinheit und damit Grundlage für alle elektrischen Messungen, brauchte seine metrologisch genaue Realisierung immer einen Umweg über andere elektrische Einheiten, nämlich das Volt und das Ohm. Die beiden Einheiten lassen sich bereits seit Längerem auf der Grundlage von Naturkonstanten realisieren, der Josephson-Konstante (Volt) und der von-Klitzing-Konstante (Ohm).

Unter Hochdruck arbeiten weltweit Wissenschaftler daran, so etwas auch beim Ampere zu schaffen. Die geeignete Naturkonstante ist die Ladung eines einzelnen Elektrons. Sie lässt sich im Prinzip messen, indem man einzelne Elektronen in entsprechenden Schaltungen quantenmechanisch „tunneln“ lässt. Das geschieht mithilfe sogenannter Einzelelektronenpumpen, die es bereits seit 1990 gibt. Doch erst jetzt ist es mit der PTB-Entwicklung gelungen, die Ladungsänderung bei jedem einzelnen „Elektronensprung“ direkt und höchstgenau zu messen.

Schumacher und sein Team entwickelten dazu eine sogenannte selbstreferenzierte Quantenstromquelle. Das ist eine Halbleiter-Schaltung mit mehreren Pumpen und Detektoren, die bei Temperaturen nahe dem absoluten Nullpunkt betrieben wird. Die Einzelelektronenpumpe ist eine winzige halbleitende Insel mit zwei Zuleitungen. Im Pumpbetrieb wird zunächst ein Elektron von links von der einen Zuleitung auf die Insel geladen und anschließend nach rechts auf die andere Zuleitung ausgeworfen.

Wird dieser Vorgang periodisch getaktet wiederholt, entsteht ein Strom, der nur noch durch die Taktfrequenz und die Einzelelektronenladung bestimmt ist. Derartige Halbleiterschaltungen gelten schon länger als aussichtsreichste Kandidaten für die Realisierung des Ampere.

Schumachers Gruppe ist es nun zum ersten Mal gelungen, die Stromstärke zu messen, die bei jedem einzelnen Elektronensprung im Spiele ist. Ihre Pumpe transportiert pro Sekunde nur ein paar Dutzend Elektronen. Damit ist sie langsam genug, um die entsprechenden Präzisionsmessungen zu ermöglichen. Wie die Zeitschrift „Nature“ kürzlich meldete, ist diese PTB-Entwicklung ein entscheidender Schritt hin zu einer Neudefinition des Ampere. Sie liefert den Nachweis, dass die Realisierung der neuen Definition auf Grundlage der Einzelelektronenladung tatsächlich funktionieren kann.

Darüber hinaus ermöglicht die neuentwickelte Stromquelle die Erzeugung validierter kleiner Ströme bis hinunter in den Attoampere-Bereich (10–18 Ampere) mit deutlich geringerer Messunsicherheit, als es durch eine klassische Strommessung erreichbar wäre. Damit erlaubt sie die Kalibrierung von Messgeräten für kleine Ströme, wie sie beispielsweise im Strahlenschutz eingesetzt werden.

Mit dem Helmholtz-Preis ehren der Helmholtz-Fonds e. V. und der Stifterverband für die deutsche Wissenschaft alle zwei bis drei Jahre Präzisionsmessungen in Physik, Chemie und Medizin. Er ist in diesem Jahr mit 20 000 € dotiert und wird am 24. Juni 2014 im Anschluss an das Helmholtz-Symposium (mit dem Thema „Durchblick: Messen mit Röntgenstrahlen“) im Haus der Wissenschaft Braunschweig übergeben.
(es/ptb)

Die Preisträger:
Lukas Fricke, Dr. Bernd Kästner, Dr. Ralf Dolata, PD Dr. Frank Hohls, PD Dr. Hans Werner Schumacher (alle Physikalisch-Technische Bundesanstalt, PTB)

Ansprechpartner:
PD Dr. Hans Werner Schumacher, PTB-Fachbereich 2.5 Halbleiterphysik und Magnetismus, Telefon: (0531) 592-2500, E-Mail: hans.w.schumacher@ptb.de

Wissenschaftliche Veröffentlichung
Lukas Fricke, Michael Wulf, Bernd Kästner, Frank Hohls, Philipp Mirovsky, Brigitte Mackrodt, Ralf Dolata, Thomas Weimann, Klaus Pierz, Uwe Siegner, Hans W. Schumacher: A self-referenced single-electron quantized-current source. http://arxiv.org/abs/1312.5669

Physikalisch-Technische Bundesanstalt (PTB):
In Braunschweig und Berlin kommt die Zeit aus Atomuhren, werden Längen auch tief in der Nanowelt gemessen, forschen die Wissenschaftler an grundlegenden Fragen zu den physikalischen Einheiten und die Mitarbeiter in den Laboratorien kalibrieren Messgeräte für höchste Genauigkeitsansprüche. Damit gehört die Physikalisch-Technische Bundesanstalt zu den ersten Adressen in der internationalen Welt der Metrologie. Als das nationale Metrologieinstitut Deutschlands ist die PTB oberste Instanz bei allen Fragen des richtigen und zuverlässigen Messens. Sie ist technische Oberbehörde des Bundesministeriums für Wirtschaft und Energie (BMWi) und beschäftigt an den beiden Standorten Braunschweig und Berlin insgesamt rund 1900 Mitarbeiter.

Weitere Informationen:

http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2014/pitext/pi140331.html

Dipl.-Journ. Erika Schow | PTB

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics