Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helmholtz-Preis für das „neue“ Ampere

31.03.2014

Wichtigster Preis der Metrologie geht an PTB-Wissenschaftler für die überprüfbare Realisierung des Ampere mithilfe von Naturkonstanten

Das „neue“ Ohm und das „neue“ Volt gibt es schon. Allerdings sind sie bisher nicht wirklich im internationalen System der Einheiten (SI) verankert. Das soll sich grundlegend ändern: Jetzt kommt das „neue“ Ampere.


Diese Halbleiterstruktur kann einzelne Elektronen und deren Ladung messen. Zu sehen sind vier Einzelelektronen-Pumpen. Mit drei Einzelelektronen-Detektoren werden die gepumpten Elektronen detektiert. Abbildung: PTB

Die Basiseinheit der Stromstärke lässt sich damit auf jene Naturkonstante zurückführen, die im „neuen“ SI dafür vorgesehen ist: die elektrische Ladung eines einzelnen Elektrons. Rechtzeitig vor den vielleicht entscheidenden Beschlüssen auf der Internationalen Konferenz für Maß und Gewicht im November dieses Jahres gelang es einer Gruppe von Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB), ein Stromstärkenormal zu entwickeln, das nicht nur einen Einzelelektronenstrom erzeugt, sondern ihn auch gleichzeitig unabhängig misst.

Für diesen wichtigen Schritt bekommen die Wissenschaftler um Hans Werner Schumacher jetzt den Hermann-von-Helmholtz-Preis. Der Preis ist mit 20 000 Euro dotiert und gilt als eine der international bedeutendsten Auszeichnungen in der Welt der Metrologie, der Wissenschaft vom genauen Messen.

Das Ampere ist ein Problemfall: Obwohl Basiseinheit und damit Grundlage für alle elektrischen Messungen, brauchte seine metrologisch genaue Realisierung immer einen Umweg über andere elektrische Einheiten, nämlich das Volt und das Ohm. Die beiden Einheiten lassen sich bereits seit Längerem auf der Grundlage von Naturkonstanten realisieren, der Josephson-Konstante (Volt) und der von-Klitzing-Konstante (Ohm).

Unter Hochdruck arbeiten weltweit Wissenschaftler daran, so etwas auch beim Ampere zu schaffen. Die geeignete Naturkonstante ist die Ladung eines einzelnen Elektrons. Sie lässt sich im Prinzip messen, indem man einzelne Elektronen in entsprechenden Schaltungen quantenmechanisch „tunneln“ lässt. Das geschieht mithilfe sogenannter Einzelelektronenpumpen, die es bereits seit 1990 gibt. Doch erst jetzt ist es mit der PTB-Entwicklung gelungen, die Ladungsänderung bei jedem einzelnen „Elektronensprung“ direkt und höchstgenau zu messen.

Schumacher und sein Team entwickelten dazu eine sogenannte selbstreferenzierte Quantenstromquelle. Das ist eine Halbleiter-Schaltung mit mehreren Pumpen und Detektoren, die bei Temperaturen nahe dem absoluten Nullpunkt betrieben wird. Die Einzelelektronenpumpe ist eine winzige halbleitende Insel mit zwei Zuleitungen. Im Pumpbetrieb wird zunächst ein Elektron von links von der einen Zuleitung auf die Insel geladen und anschließend nach rechts auf die andere Zuleitung ausgeworfen.

Wird dieser Vorgang periodisch getaktet wiederholt, entsteht ein Strom, der nur noch durch die Taktfrequenz und die Einzelelektronenladung bestimmt ist. Derartige Halbleiterschaltungen gelten schon länger als aussichtsreichste Kandidaten für die Realisierung des Ampere.

Schumachers Gruppe ist es nun zum ersten Mal gelungen, die Stromstärke zu messen, die bei jedem einzelnen Elektronensprung im Spiele ist. Ihre Pumpe transportiert pro Sekunde nur ein paar Dutzend Elektronen. Damit ist sie langsam genug, um die entsprechenden Präzisionsmessungen zu ermöglichen. Wie die Zeitschrift „Nature“ kürzlich meldete, ist diese PTB-Entwicklung ein entscheidender Schritt hin zu einer Neudefinition des Ampere. Sie liefert den Nachweis, dass die Realisierung der neuen Definition auf Grundlage der Einzelelektronenladung tatsächlich funktionieren kann.

Darüber hinaus ermöglicht die neuentwickelte Stromquelle die Erzeugung validierter kleiner Ströme bis hinunter in den Attoampere-Bereich (10–18 Ampere) mit deutlich geringerer Messunsicherheit, als es durch eine klassische Strommessung erreichbar wäre. Damit erlaubt sie die Kalibrierung von Messgeräten für kleine Ströme, wie sie beispielsweise im Strahlenschutz eingesetzt werden.

Mit dem Helmholtz-Preis ehren der Helmholtz-Fonds e. V. und der Stifterverband für die deutsche Wissenschaft alle zwei bis drei Jahre Präzisionsmessungen in Physik, Chemie und Medizin. Er ist in diesem Jahr mit 20 000 € dotiert und wird am 24. Juni 2014 im Anschluss an das Helmholtz-Symposium (mit dem Thema „Durchblick: Messen mit Röntgenstrahlen“) im Haus der Wissenschaft Braunschweig übergeben.
(es/ptb)

Die Preisträger:
Lukas Fricke, Dr. Bernd Kästner, Dr. Ralf Dolata, PD Dr. Frank Hohls, PD Dr. Hans Werner Schumacher (alle Physikalisch-Technische Bundesanstalt, PTB)

Ansprechpartner:
PD Dr. Hans Werner Schumacher, PTB-Fachbereich 2.5 Halbleiterphysik und Magnetismus, Telefon: (0531) 592-2500, E-Mail: hans.w.schumacher@ptb.de

Wissenschaftliche Veröffentlichung
Lukas Fricke, Michael Wulf, Bernd Kästner, Frank Hohls, Philipp Mirovsky, Brigitte Mackrodt, Ralf Dolata, Thomas Weimann, Klaus Pierz, Uwe Siegner, Hans W. Schumacher: A self-referenced single-electron quantized-current source. http://arxiv.org/abs/1312.5669

Physikalisch-Technische Bundesanstalt (PTB):
In Braunschweig und Berlin kommt die Zeit aus Atomuhren, werden Längen auch tief in der Nanowelt gemessen, forschen die Wissenschaftler an grundlegenden Fragen zu den physikalischen Einheiten und die Mitarbeiter in den Laboratorien kalibrieren Messgeräte für höchste Genauigkeitsansprüche. Damit gehört die Physikalisch-Technische Bundesanstalt zu den ersten Adressen in der internationalen Welt der Metrologie. Als das nationale Metrologieinstitut Deutschlands ist die PTB oberste Instanz bei allen Fragen des richtigen und zuverlässigen Messens. Sie ist technische Oberbehörde des Bundesministeriums für Wirtschaft und Energie (BMWi) und beschäftigt an den beiden Standorten Braunschweig und Berlin insgesamt rund 1900 Mitarbeiter.

Weitere Informationen:

http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2014/pitext/pi140331.html

Dipl.-Journ. Erika Schow | PTB

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie