Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Helmholtz-Preis für Entdecker des "Mini-Frequenzkammes"

08.04.2009
Bedeutendster Preis für Metrologie geht an Tobias J. Kippenberg, Ronald Holzwarth und Pascal Del Haye - völlig neuer Ansatz bei der exakten Messung von Frequenzen

Ein Frequenzkamm, mit dem sich hohe Frequenzen in niedrige übersetzen und zugleich extrem genau messen lassen, ist nicht nur ein physikalisches Meisterstück, sondern auch ein Preis-Sammler: Nachdem er bereits den Physik-Nobelpreis wert war (verliehen in 2005 an Theodor Hänsch und John L. Hall), wird ein alternatives Verfahren für einen Frequenzkamm jetzt mit dem Helmholtz-Preis, dem bedeutendsten europäischen Metrologiepreis, ausgezeichnet.

Für die Entwicklung eines optischen Frequenzkamms auf einem Chip, der zudem auf einem völlig anderen physikalischen Prinzip als sein Vorgänger basiert, erhalten Dr. Tobias J. Kippenberg und seine Kollegen Dr. Ronald Holzwarth und Pascal Del Haye vom Max-Planck-Institut für Quantenoptik in Garching jetzt den Helmholtz-Preis 2009. Tobias Kippenberg ist mittlerweile Professor an der Eidgenössischen Technischen Hochschule in Lausanne (EPFL, École polytechnique fédérale de Lausanne). Der mit 20 000 Euro dotierte Preis wird am 23. Juni in einer Feierstunde im Anschluss an das öffentliche Hermann-von-Helmholtz-Symposium in der Berlin-Brandenburgischen Akademie der Wissenschaften am Gendarmenmarkt in Berlin verliehen.

"Die Auswahl der Preisträger ist nicht leicht gefallen", gibt Prof. Dr. Ernst O. Göbel, Präsident der Physikalisch-Technischen Bundesanstalt (PTB) und Vorsitzer des Verwaltungsrates des Helmholtz-Fonds, zu. "Unsere Gutachter haben festgestellt, dass die Qualität der eingereichten Arbeiten in den letzen Jahren stetig gestiegen ist." Immerhin 36 Wissenschaftler/innen bzw. Wissenschaftler-Gruppen hatten sich in diesem Jahr beworben. Die Wahl der Jury fiel schließlich auf die von Kippenberg und seinen Kollegen eingereichte Arbeit zu einer neuen Generation von miniaturisierten Frequenzkämmen.

Ein herkömmlicher Frequenzkamm wird mit den extrem kurzen Lichtblitzen eines Femtosekundenlasers erzeugt. Das Emissionsspektrum eines solchen Kurzpulslasers besteht aus einzelnen Linien, die alle den gleichen Frequenzabstand zu einander haben. Dagegen beruht der neue "Mini-Kamm" auf einem Mikroresonator. Wird in ihn Laserlicht eingekoppelt, so treten extrem hohe Lichtintensitäten (Photonendichten) auf, mit einer Fülle von nichtlinearen Effekten. Ein solcher Effekt, der "Kerr-Effekt", ermöglicht die Entstehung eines Frequenzkammes: Zwei Lichtquanten gleicher Energie werden in zwei Photonen umgewandelt, von denen das eine eine höhere, das andere eine niedrigere Energie hat. Die neu erzeugten Photonen können nun ihrerseits mit den ursprünglichen Lichtquanten interagieren und dabei wiederum neue Frequenzen erzeugen. Aus dieser Kaskade entsteht ein überraschend breites Spektrum von Frequenzen - ganz ohne die Verstärkung durch ein Lasermedium, das bei der herkömmlichen Methode nötig ist. Wie beim Femtosekundenlaser haben die im Mikroresonator generierten Frequenzen mit extrem großer Genauigkeit den gleichen Abstand, so dass sich der "Kamm" hervorragend für Frequenzmessungen eignet.

Weil der neuartige Frequenzkamm so kompakt ist, sind seine Frequenzabstände sehr groß; er hat also weniger Zacken pro Frequenzintervall und auf jede "Zacke des Kamms" entfällt eine wesentlich höhere Leistung. Das hat zum Beispiel Vorteile für die Kalibrierung von Echelle-Spektrometern, die in der Astronomie beispielsweise zur Entdeckung erdähnlicher Planeten außerhalb unseres Sonnensystems eingesetzt werden.

Neben der Messung von optischen Frequenzen und der Entwicklung noch genauerer optischer Uhren liegt eine weitere vielversprechende Anwendung in der optischen Telekommunikation, da der Abstand der Kamm-Moden ziemlich genau mit den typischen Anforderungen für die "Träger" der Datenkanäle in der Glasfaser-basierten optischen Telekommunikation übereinstimmt. Während bisher für jeden Frequenzkanal ein eigener Generator mit eigenem Laser erforderlich ist, würde es der neue Ansatz ermöglichen, mit einem einzigen Bauelement eine Vielzahl von Datenkanälen zu definieren.

ptb/es/jes

Die Originalveröffentlichung:
Optical frequency comb generation from a monolithic microresonator. P. Del Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg. Nature 450, 1214-1217, 27 December 2007.
Ansprechpartner:
Dr. Jürgen Helmcke,
helmholtzpreis@ptb.de
Helmholtz-Fonds. e.V.
c/o Physikalisch-Technische Bundesanstalt (PTB)
Bundesallee 100
38116 Braunschweig

Dr. Jens Simon | idw
Weitere Informationen:
http://www.ptb.de
http://www.helmholtz-fonds.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik