Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie haltbar sind künstliche Hüftgelenke?

27.08.2009
Gute Ergebnisse für mehrteilige Implantate aus Titan im Labor / Heidelberger Wissenschaftler der Orthopädischen Universitätsklinik Heidelberg ausgezeichnet

Künstliche Hüftgelenke werden immer sicherer: Moderne mehrteilige Hüftimplantate aus Titan geben nur winzige Mengen des Metalls in das umliegende Gewebe ab und sind deshalb voraussichtlich besonders haltbar. Dies haben Labortests von Wissenschaftlern der Orthopädischen Universitätsklinik Heidelberg gezeigt.

Für seinen Beitrag: "Korrosion und Ionenfreisetzung bei Hüftimplantaten mit modularem Halssystem" wurde Dr. Jan Philippe Kretzer, Technischer Leiter des Labors für Biomechanik und Implantatforschung an der Orthopädischen Universitätsklinik Heidelberg, auf der Jahrestagung der Deutschen Gesellschaft für Biomechanik der 1. Preis des Young Investigator Awards 2009 verliehen (dotiert mit 1.000 €).

Winzige Partikel lösen Allergien und Entzündungen aus

Jedes Jahr bekommen rund 180.000 Patienten eine neue künstliche Hüfte. Ihre Haltbarkeit beträgt meist nur 15-20 Jahre. Falls sie sich lockern, ist ein Austausch erforderlich. Ursachen für eine Lockerung sind u. a. minimale Bewegungen und der Verschleiß der einzelnen Teile des Kunstgelenkes. Dadurch lösen sich winzige Partikel und Ionen aus dem Gelenk, die allergische und toxische Reaktionen hervorrufen können. In seltenen Fällen kann es auch zur Korrosion und schließlich zum Funktionsverlust des Kunstgelenkes kommen.

Diesem Verschleiß versuchen die Hersteller durch speziell gestaltete Kunstgelenke und Materialien entgegenzuwirken. Neu auf dem Markt sind Kunstgelenke aus Titan, die aus mehreren Komponenten bestehen. Solche mehrteiligen (modularen) Hüftimplantate ermöglichen dem Orthopäden, das Kunstgelenk bei der Operation ganz individuell den Bedürfnissen des Patienten anzupassen.

Im Heidelberger Biomechanik-Labor werden Prothesen-Typen rund um die Uhr getestet. So können innerhalb von wenigen Wochen die Belastungen durchlaufen werden, denen das künstliche Hüftgelenk normalerweise in 10 Jahren standhalten muss. Die Prüfsysteme im Labor sind in der Lage Bewegungs- und Laufmuster des Gelenkes perfekt nachzuahmen.

Die Heidelberger Wissenschaftler haben nun untersucht, wie sich unterschiedliche modulare Kunstgelenke im Biomechanik-Labor unter Belastung verhalten. In seinen Tests haben Dr. Kretzer und sein Team gemessen, wie viel Titan verschiedene Implantate unter Belastung abgeben und während welchen Zeitraums dies passiert.

Raue Oberfläche verringert Abrieb von Titan

Ihre Messungen ergaben, dass nur extrem geringe, klinisch unbedenkliche Mengen an Titan (12 bis 44 Mikrogrammµg; 1µg= 0,000001g) freigesetzt wurden - und zwar unabhängig vom Design des untersuchten Kunstgelenks. Allein die Art der Oberflächen schien einen Einfluss zu haben: Je rauer die Oberfläche des Implantats war, desto geringer war der Abrieb - weniger Titan wurde freigesetzt. Kretzer erklärt dies mit der stabileren Verbindung der Komponenten bei rauen Oberflächen. Bei keiner Prothese kam es zu einem mechanischen Versagen oder übermäßiger Korrosion.

Was noch untersucht werden müsse, sei die Sicherheit der unterschiedlichen modularen Verbindungen von Hals und Schaft der Implantate, sagt Kretzer. Die Ergebnisse dieser in-vitro-Untersuchungen seien jedoch vielversprechend und ein gutes Argument dafür, die untersuchten Kunstgelenke in begrenztem Umfang bei Patienten anzuwenden.

Weitere Informationen über die Orthopädische Universitätsklinik im Internet:
www.orthopaedie.uni-heidelberg.de
Ansprechpartner:
Dr. sc. hum. Dipl.-Ing. Jan Philippe Kretzer
Stiftung Orthopädische Universitätsklinik
Labor für Biomechanik und Implantatforschung
Schlierbacher Landstraße 200a
69118 Heidelberg
Tel.: 06221 / 96 92 09
Fax: 06221 / 96 92 06
E-Mail: Philippe.Kretzer(at)ok.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit 1.600 Betten werden jährlich rund 500.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.100 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. (Stand 12/2008)
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de
http://www.orthopaedie.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten