Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grant from the Moore Foundation for the development of a non-invasive Quantum Electron Microscope

11.10.2012
The Gordon and Betty Moore Foundation, established in 2000, seeks to support a variety of projects – from advancing environmental research and patient care to high impact fundamental research.

Among this year’s selected projects is the development of a quantum electron microscope, an instrument which would mean a big step for the investigation of biological samples.

Three groups will work on this project in a coordinated effort: the “Ultrafast Quantum Optics” group under the leadership of Professor Hommelhoff at the Max-Planck-Institute of Quantum Optics in Garching (Germany, near Munich) and Friedrich-Alexander-Universität Erlangen-Nürnberg, a team of scientists at Stanford University (Stanford, USA), and another one at Massachusetts Institute of Technology (Boston, USA).

Each group will receive financial support of 1.145 million dollars (roughly one million Euro) over a period of 40 months. The basic idea of this measurement principle is closely related to the pioneering work that has been awarded with this year’s Nobel Prize in physics, the work of Prof. Serge Haroche (Collège de France, Paris).

Electrons do not only behave like electrically charged particles but also show wavelike properties, as has been known for about a hundred years. At sufficiently high energies their so-called de Broglie wavelength lies in the nanometre to picometre range (10-9 to10-12 m). This makes free electrons extremely well suited for the imaging of biological structures, where a resolution on the atomic or molecular scale is reached.

Hence, electron microscopes are by now a standard tool in research as well as in technical applications. The catch downside of this method, however, is the high radiation dose applied to the sample that can damage its structure. For example, the dose consumed in the process of taking one single image is equivalent to the dose the cell would receive by a nuclear bomb explosion that takes place in a distance of less than 50 metres.

The scientists aim at avoiding this problem by applying interaction-free quantum measurements. The basic concept of this principle has been described for photons more than 20 years ago. It is generally assumed that the state of a quantum object gets altered or even destroyed as a consequence of its determination. The new principle puts this assumption “upside down”: it is not the state of the object which gets disturbed; instead, the quantum properties of the observer are influenced by the mere presence of the object. The concept was experimentally realized in the team of Prof. Serge Haroche. The group used microwave resonators whose resonance conditions get changed if a single atom is trapped inside. Hence, the transparency or opaqueness of the resonator gives information about the presence of the atom – without destroying its quantum state, because the object does not interact directly with the photons.

Now the plan is to extend this principle of interaction-free quantum measurement to the use of free electrons. Here, the electron beam will not be launched directly onto the sample surface, as in a conventional electron microscope. Instead, the information on the properties of the sample will be deduced from the influence the object has on the quantum properties of the electrons, in analogy to the effect the atom mentioned above has on the optical properties of the resonator. Such an electron resonator could, for example, be made from two ring-like traps for free electrons arranged on top of each other in a short distance. An electron which circulates in the upper ring is, according to quantum mechanics, allowed to tunnel to the lower ring with a certain probability, and tunnel back, and so on. But once an opaque object is inserted into the lower ring – for example a biological sample stained with gold particles – these oscillations get stopped.

“Our first step will be to demonstrate that the interaction-free quantum measurement principle indeed works with electrons. We have already accomplished some of the most important technical requirements – wave guide structures for the controlled steering and manipulation of the quantum properties of electrons,” Prof. Peter Hommelhoff explains. “The development of a microscope that will image biological samples non-invasively and with high resolution will be the next step. Such a quantum electron microscope would reduce the radiation dose consumed in the sample by a lot, thereby avoiding the damage of its structure. It would be a truly fascinating goal to make movies from living cells with the new device – with the spatial resolution of an electron microscope.”

Contact:
Prof. Peter Hommelhoff
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 89 32905 265
E-mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Deutscher Wirtschaftspreis für Forschung in Gesundheitsökonomik
21.08.2017 | Joachim Herz Stiftung

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik