Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewebe mit Heilkraft

12.12.2013
Erneut geht ein hoch dotierter EU-Forschungspreis an die Universität Würzburg. Jürgen Groll forscht an Biomaterialien, die neue Wege in der Medizin eröffnen können. Die Europäische Union stellt ihm dafür in den kommenden fünf Jahren rund zwei Millionen Euro zur Verfügung.

Weiß, fast durchscheinend und von der Struktur ein wenig an eine einlagige Mullkompresse erinnernd: Ziemlich unscheinbar kommt sie daher, die neueste Entwicklung aus den Labors von Jürgen Groll.

Doch die Erwartungen, die Wissenschaft, Politik und Industrie in das Produkt setzen, sind groß. So groß, dass der EU-Forschungsrat Jürgen Groll jetzt einen sogenannten ERC Consolidator Grant zugesprochen hat. Groll, Inhaber des Lehrstuhls Funktionswerkstoffe in der Medizin und Zahnheilkunde, erhält damit rund zwei Millionen Euro in den kommenden fünf Jahren. Mit dem Geld soll er erforschen, ob das Gewebe diese Hoffnungen tatsächlich erfüllen kann.

Alarm im Immunsystem

„Jedes künstliche Material, das in einen menschlichen Körper eingesetzt wird, versetzt zunächst das Immunsystem in Alarmbereitschaft“, schildert Groll das Problem, das seiner Forschung zu Grunde liegt. Eine Entzündungsreaktion kommt in Gang, die oft nach Tagen wieder abklingt, jedoch nur schwer zu kontrollieren ist. Manchmal verläuft sie so heftig, dass eine Abstoßungsreaktion erfolgt.

Dann muss das Implantat so schnell wie möglich wieder entfernt werden. Häufiger toleriert der Körper das Material, bildet aber eine Bindegewebskapsel darum herum. „Was wir brauchen, ist ein Material, das vom Körper nicht nur toleriert wird. Es sollten sich möglichst auch körpereigene Zellen darin ansiedeln, so dass im Laufe der Zeit neues Gewebe entsteht“, sagt Groll. Gesucht sind Biomaterialien, die Heilungsprozesse in Gang setzen können und zusätzlich die Integration des Implantats in den Körper unterstützen. Das neue Forschungsprojekt, das unter dem Namen Design2Heal läuft, arbeitet an Implantaten, die beide Prozesse fördern.

Auf das Design kommt es an

Schon in der Vergangenheit haben Groll und seine Mitarbeiter aus biokompatiblen Polymeren feinste Fäden produziert und damit Netze gesponnen, die als Implantate Verwendung fanden. Die unerwünschten Reaktionen des Immunsystems konnten sie damit allerdings nicht vollständig unterdrücken. Inzwischen legen neueste Forschungsergebnisse den Schluss nahe, dass die Gestalt und Geometrie des Materials für diese Reaktion ausschlaggebend sind:

„Jüngste Studien zeigen, dass hochgeordnete Strukturen mit Poren, die zwischen 30 und 60 Mikrometern groß sind, sehr viel seltener eine starke Entzündungsreaktion und Kapselbildung hervorrufen“, sagt Groll. Im Gegenteil: Die in diesem Zusammenhang maßgeblichen Immunzellen, die sogenannten Makrophagen, geben sogar beruhigende Signale; der Körper startet in der Folge den Heilungsprozess, neue Blutgefäße wachsen in das Implantat hinein. Warum das so ist? Dafür haben die Wissenschaftler bislang keine eindeutige Erklärung.

Europaweit einzigartige Technik

In seinen Labors wird Groll in den kommenden fünf Jahren Implantate herstellen, die diese Eigenschaft besitzen. Mit Hilfe einer neuen Technik, die einzigartig in Europa ist, „spinnt“ er feine Netze, deren Poren die gewünschte Größe besitzen. Gleichzeitig trägt er auf deren Oberfläche spezielle Substanzen auf, die im Körper gezielt Zellen – beispielsweise Stammzellen – anlocken und ihnen einen Anker zum Andocken bieten. Auf diese Weise wächst im Körper neues Gewebe heran, während das Implantat nach und nach wieder abgebaut wird.

Melt Electrospinning Writing – kurz MEW – heißt die Technik, die dabei im Einsatz kommt. Prinzipiell wie bei einem Tintenstrahldrucker wird dabei eine Flüssigkeit durch eine Düse auf einem Träger verteilt. Nur dass es sich in diesem Fall bei der Flüssigkeit um eine Polymerschmelze handelt, die Düse extrem fein ist und zwischen der Düse und einer gegenüberliegenden Elektrode eine hohe Spannung liegt.

Durch die Spannung wird die Schmelze zu einem feinen Strahl gedehnt; da sich der Tisch, auf dem der Strahl landet, computergesteuert bewegt, können die Wissenschaftler jedes gewünschte Muster zeichnen. „Wir sind damit sogar in der Lage, kleine, röhrenartige Strukturen zu erzeugen, die beispielsweise in der Gefäßchirurgie von Interesse sein könnten“, sagt Groll. Die Polymere, die in Würzburg zum Einsatz kommen, sind abbaubar und für die Anwendung in der Medizin zugelassen. Einer raschen klinischen Verwendung steht zumindest von dieser Seite nichts im Weg.

Vielfältige Verwendungsmöglichkeit

Apropos Verwendung: Die Einsatzmöglichkeiten für das neue Material sind nach Grolls Worten vielfältig. Im Prinzip könnte es die Oberfläche eines jeden Implantats überziehen und so die gefürchtete Abstoßungsreaktion möglicherweise verhindern. Es könnte aber auch selbst als Implantat Verwendung finden, beispielsweise als Netz, das einen Leistenbruch schließt, und die Bildung von neuem, körpereigenem Gewebe anstößt.

Die konkrete Umsetzung in ein Medizinprodukt steht allerdings nicht im Fokus des Forschungsprojekts. „Wir betreiben Grundlagenforschung und arbeiten an den generellen Prinzipien“, sagt Groll. Wohin die Ergebnisse führen, ist offen. „Vielleicht eröffnen wir damit ja ganz neue Wege, an die bisher noch keiner gedacht hat.“

Kontakt

Prof. Dr. Jürgen Groll,
T: (0931) 201-73610; E-Mail: office@fmz.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

nachricht EU-Förderung in Millionenhöhe für Regensburger Wissenschaftler
21.04.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen