Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gewebe mit Heilkraft

12.12.2013
Erneut geht ein hoch dotierter EU-Forschungspreis an die Universität Würzburg. Jürgen Groll forscht an Biomaterialien, die neue Wege in der Medizin eröffnen können. Die Europäische Union stellt ihm dafür in den kommenden fünf Jahren rund zwei Millionen Euro zur Verfügung.

Weiß, fast durchscheinend und von der Struktur ein wenig an eine einlagige Mullkompresse erinnernd: Ziemlich unscheinbar kommt sie daher, die neueste Entwicklung aus den Labors von Jürgen Groll.

Doch die Erwartungen, die Wissenschaft, Politik und Industrie in das Produkt setzen, sind groß. So groß, dass der EU-Forschungsrat Jürgen Groll jetzt einen sogenannten ERC Consolidator Grant zugesprochen hat. Groll, Inhaber des Lehrstuhls Funktionswerkstoffe in der Medizin und Zahnheilkunde, erhält damit rund zwei Millionen Euro in den kommenden fünf Jahren. Mit dem Geld soll er erforschen, ob das Gewebe diese Hoffnungen tatsächlich erfüllen kann.

Alarm im Immunsystem

„Jedes künstliche Material, das in einen menschlichen Körper eingesetzt wird, versetzt zunächst das Immunsystem in Alarmbereitschaft“, schildert Groll das Problem, das seiner Forschung zu Grunde liegt. Eine Entzündungsreaktion kommt in Gang, die oft nach Tagen wieder abklingt, jedoch nur schwer zu kontrollieren ist. Manchmal verläuft sie so heftig, dass eine Abstoßungsreaktion erfolgt.

Dann muss das Implantat so schnell wie möglich wieder entfernt werden. Häufiger toleriert der Körper das Material, bildet aber eine Bindegewebskapsel darum herum. „Was wir brauchen, ist ein Material, das vom Körper nicht nur toleriert wird. Es sollten sich möglichst auch körpereigene Zellen darin ansiedeln, so dass im Laufe der Zeit neues Gewebe entsteht“, sagt Groll. Gesucht sind Biomaterialien, die Heilungsprozesse in Gang setzen können und zusätzlich die Integration des Implantats in den Körper unterstützen. Das neue Forschungsprojekt, das unter dem Namen Design2Heal läuft, arbeitet an Implantaten, die beide Prozesse fördern.

Auf das Design kommt es an

Schon in der Vergangenheit haben Groll und seine Mitarbeiter aus biokompatiblen Polymeren feinste Fäden produziert und damit Netze gesponnen, die als Implantate Verwendung fanden. Die unerwünschten Reaktionen des Immunsystems konnten sie damit allerdings nicht vollständig unterdrücken. Inzwischen legen neueste Forschungsergebnisse den Schluss nahe, dass die Gestalt und Geometrie des Materials für diese Reaktion ausschlaggebend sind:

„Jüngste Studien zeigen, dass hochgeordnete Strukturen mit Poren, die zwischen 30 und 60 Mikrometern groß sind, sehr viel seltener eine starke Entzündungsreaktion und Kapselbildung hervorrufen“, sagt Groll. Im Gegenteil: Die in diesem Zusammenhang maßgeblichen Immunzellen, die sogenannten Makrophagen, geben sogar beruhigende Signale; der Körper startet in der Folge den Heilungsprozess, neue Blutgefäße wachsen in das Implantat hinein. Warum das so ist? Dafür haben die Wissenschaftler bislang keine eindeutige Erklärung.

Europaweit einzigartige Technik

In seinen Labors wird Groll in den kommenden fünf Jahren Implantate herstellen, die diese Eigenschaft besitzen. Mit Hilfe einer neuen Technik, die einzigartig in Europa ist, „spinnt“ er feine Netze, deren Poren die gewünschte Größe besitzen. Gleichzeitig trägt er auf deren Oberfläche spezielle Substanzen auf, die im Körper gezielt Zellen – beispielsweise Stammzellen – anlocken und ihnen einen Anker zum Andocken bieten. Auf diese Weise wächst im Körper neues Gewebe heran, während das Implantat nach und nach wieder abgebaut wird.

Melt Electrospinning Writing – kurz MEW – heißt die Technik, die dabei im Einsatz kommt. Prinzipiell wie bei einem Tintenstrahldrucker wird dabei eine Flüssigkeit durch eine Düse auf einem Träger verteilt. Nur dass es sich in diesem Fall bei der Flüssigkeit um eine Polymerschmelze handelt, die Düse extrem fein ist und zwischen der Düse und einer gegenüberliegenden Elektrode eine hohe Spannung liegt.

Durch die Spannung wird die Schmelze zu einem feinen Strahl gedehnt; da sich der Tisch, auf dem der Strahl landet, computergesteuert bewegt, können die Wissenschaftler jedes gewünschte Muster zeichnen. „Wir sind damit sogar in der Lage, kleine, röhrenartige Strukturen zu erzeugen, die beispielsweise in der Gefäßchirurgie von Interesse sein könnten“, sagt Groll. Die Polymere, die in Würzburg zum Einsatz kommen, sind abbaubar und für die Anwendung in der Medizin zugelassen. Einer raschen klinischen Verwendung steht zumindest von dieser Seite nichts im Weg.

Vielfältige Verwendungsmöglichkeit

Apropos Verwendung: Die Einsatzmöglichkeiten für das neue Material sind nach Grolls Worten vielfältig. Im Prinzip könnte es die Oberfläche eines jeden Implantats überziehen und so die gefürchtete Abstoßungsreaktion möglicherweise verhindern. Es könnte aber auch selbst als Implantat Verwendung finden, beispielsweise als Netz, das einen Leistenbruch schließt, und die Bildung von neuem, körpereigenem Gewebe anstößt.

Die konkrete Umsetzung in ein Medizinprodukt steht allerdings nicht im Fokus des Forschungsprojekts. „Wir betreiben Grundlagenforschung und arbeiten an den generellen Prinzipien“, sagt Groll. Wohin die Ergebnisse führen, ist offen. „Vielleicht eröffnen wir damit ja ganz neue Wege, an die bisher noch keiner gedacht hat.“

Kontakt

Prof. Dr. Jürgen Groll,
T: (0931) 201-73610; E-Mail: office@fmz.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise