Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gehirnverschaltungen auf der Spur – Bernstein Preis 2013 geht an Hermann Cuntz

25.09.2013
Für seine Forschung über den Aufbau neuronaler Verschaltungen wird Hermann Cuntz mit einem der attraktivsten Nachwuchsförderpreise ausgezeichnet.

Der Bernstein Preis für Computational Neuroscience 2013 wird an den Frankfurter Wissenschaftler Hermann Cuntz für seine Erforschung der Prinzipien neuronaler Verbindungen verliehen.


Diese lebensecht aussehende Nervenzellen wurden von Hermann Cuntz am Computer mithilfe der „morphologische Modeling“-Methode erstellt.

Foto: Hermann Cuntz, 2011

Die Preisübergabe findet durch Dr. Christiane Buchholz vom Bundesministerium für Bildung und Forschung (BMBF) am 25. September 2013 um 15:50 Uhr im Rahmen der Bernstein Konferenz zur Computational Neuroscience in Tübingen statt.

Mit bis zu 1,25 Millionen Euro ist der Preis einer der bestdotierten Nachwuchsauszeichnungen weltweit. Er ermöglicht herausragenden Nachwuchsforschern den Aufbau einer eigenen Arbeitsgruppe an einer deutschen Forschungseinrichtung. Der diesjährige Preisträger Hermann Cuntz plant seine Arbeitsgruppe am Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, sowie am Frankfurt Institute for Advanced Studies (FIAS) aufzubauen und damit den Bernstein Fokus: Neurotechnologie in Frankfurt zu erweitern.

Nach welchen Prinzipien verknüpfen sich Nervenzellen zu kleinen Netzwerken im Gehirn? Gibt es einen grundsätzlichen Verbindungscode? In seiner Forschung beschäftigt sich Hermann Cuntz mit der Frage, welche Auswirkung die Gestalt von Nervenzellen auf Bau und Funktion neuronaler Schaltkreise hat. Sein Handwerkszeug sind theoretische Modelle. Mit ihrer Hilfe kann er im Computer Nervenzellen synthetisch erstellen und berechnen, wie sich die Zellen – ausgehend von ihrer Form – in optimaler Weise zu kleinen Zellverbünden verbinden. In einem zweiten Ansatz schaut er sich an, welche Auswirkungen der Aufbau des Schaltkreises auf dessen eigene Aktivität und Dynamik hat.

Auf diese Weise gelingt es ihm, die Beziehung zwischen Struktur und Funktion von neuronalen Netzwerken zu entschlüsseln. „Für mich ist die neuronale Morphologie, also die Gestalt von Nervenzellen, der Ausgangspunkt um allgemeine Regeln über neuronale Verbindungen und Funktionen abzuleiten“, sagt der Neurowissenschaftler.

Cuntz bisherige Arbeiten haben die Grundlagen zu seinen theoretischen Analysen gelegt. So hat er das „morphologische Modeling“ entwickelt. Diese Methode erlaubt es ihm, unter Berücksichtigung bestimmter Faktoren, Nervenzellen mit verschiedenster Form – oder Morphologie – am Computer zu erzeugen. In die zugrundeliegende Formel fließen verschiedene Kenngrößen ein, wie etwa die Anzahl der Kontaktstellen zu benachbarten Neuronen oder die Nutzung von möglichst kurzen Verbindungspfaden und wenig Nervenzell-Material. „Die beiden zuletzt genannten Kriterien wurden bereits Anfang des 19. Jahrhunderts vom spanischen Anatom Ramón y Cajal postuliert“, erklärt Cuntz.

„Ich nutze sie jetzt um anatomisch realistische Modelle von Nervenzellen und Nervenzellgruppen zu bilden“. Seine synthetischen Neurone sind so naturgetreu, dass selbst Neuroanatomie-Experten die künstlich generierten nicht von natürlichen Zellen unterscheiden können. Mittlerweile nutzen Wissenschaftler weltweit die von Cuntz für dieses Verfahren entwickelte Computersoftware um den Aufbau des Gehirns in Großprojekten wie dem Human Brain Project nachzubilden.

Den Fragen nach den Verschaltungsprinzipen im Gehirn wird Hermann Cuntz in Frankfurt in Kooperation mit den dortigen Wissenschaftlern des ESI, des FIAS, sowie der Goethe-Universität Frankfurt weiter nachgehen. Dabei wird er den bestehenden Bernstein Fokus: Neurotechnologie in Frankfurt verstärken. Insbesondere plant er die Zusammenarbeit mit experimentell arbeitenden Forschern noch stärker zu vertiefen, um so seine Netzwerk-Modelle und ihre Vorhersagen auf ihre Wirklichkeitstreue zu überprüfen und konstant weiterzuentwickeln.

Hermann Cuntz hat an der Eberhard Karls Universität Biologie studiert und seine Diplomarbeit bei Alexander Borst am Friedrich Miescher Labor der Max-Planck Gesellschaft in Tübingen geschrieben. Anschließend folgte er Borst zunächst an die University of California in Berkeley (USA) und später ans Max-Planck-Institut für Neurobiologie in München, wo er 2004 promovierte. Nach einem zweijährigen Postdoc-Aufenthalt bei Idan Segev an der Hebrew University in Jerusalem, arbeitete er im Labor von Michael Häusser am University College London. Seit 2011 ist er Gastwissenschaftler bei Pascal Fries am ESI und sein Labor ist am Institut für Klinische Neuroanatomie der Goethe Universität angesiedelt.

Der Bernstein Preis wird dieses Jahr bereits zum 8. Mal verliehen und ist Teil des vom BMBF im Jahre 2004 ins Leben gerufenen Nationalen Bernstein Netzwerks Computational Neuroscience. Ziel der Förderinitiative war es, die neue Forschungsdisziplin in Deutschland nachhaltig zu etablieren. Inzwischen hat sich das Netzwerk mit Hilfe der BMB-Förderung zu einem der größten Forschungsnetze im Bereich der Computational Neuroscience weltweit entwickelt. Namensgeber des Netzwerks ist der deutsche Physiologe Julius Bernstein (1835-1917).

Kontakt:
Dr. Hermann Cuntz
Ernst Strüngmann Institute (ESI)
for Neuroscience in Cooperation
with Max Planck Society
Institut Anatomie I – Klinische Neuroanatomie
Goethe-Universität
Theodor-Stern-Kai 7
Gebäude 27
60590 Frankfurt/Main
Tel: (+49)-069-6301-87127
E-Mail: hermann.neuro@gmail.com

Mareike Kardinal Bernstein | idw
Weitere Informationen:
http://www.nncn.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationen in der Bionik gesucht!
18.01.2018 | VDI Verein Deutscher Ingenieure e. V.

nachricht Fraunhofer HHI erhält AIS Technology Innovation Award 2018 für 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie