Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Garchinger Physiker erhält Starthilfe aus Brüssel - EU stattet jungen Professor mit hohen Fördergeldern aus

23.11.2009
Die Chance auf extrem hochaufgelöste und kontrastreiche Bilder aus unserem Körper hat die Europäische Union überzeugt. Sie verleiht dem jüngst an die Technische Universität München berufenen Prof. Dr. Franz Pfeiffer einen EU-Förderpreis in Höhe von 2 Millionen Euro.

Als Mitglied im Exzellenzcluster "Munich-Centre for Advanced Photonics" (MAP) forscht Pfeiffer an neuen Röntgen-Technologien für die biomedizinische Bildgebung. Damit wollen er und sein Team die Grundlagen legen für eine frühzeitige und zuverlässigere Diagnostik von Tumorerkrankungen im Frühstadium.

Die begehrten und hochdotierten EU-Fördermittel ermöglichen Pfeiffer, seine neuen Bildgebungsverfahren weiter zu entwickeln und sie in der biomedizinischen Forschung anzuwenden. Diese Verfahren beruhen auf dem Einsatz von Röntgenstrahlung, die in der Medizin und Biologie eine bekannte und bewährte Methode zum genauen Blick in den Körper ist.

Das funktioniert, weil Knochen und Gewebe die Strahlung unterschiedlich absorbieren. Sobald es um kleine Dichteunterschiede in einheitlich weichem Gewebe wie beispielsweise in der Mammografie oder der Gehirn-Bildgebung geht, ist der Kontrast der Bilder nicht mehr groß genug und die Methode wird ungenau. Physiker wissen längst, dass sie durch die zusätzliche Betrachtung der Phasenverschiebung der kurzwelligen Röntgenstrahlung Bilder von großer Genauigkeit erhalten. Dazu bedarf es allerdings der besonderen, so genannten brillanten Synchrotron-Röntgen-Strahlung mit ihren einzigartigen Eigenschaften, die jedoch wegen der Größe der Geräte nur an wenigen Stellen der Welt zur Verfügung steht.

Mit einigen Tricks lässt sich aber auch mit den sehr viel billigeren konventionellen Röntgenröhren eine näherungsweise "brillante" Röntgenstrahlung erzeugen. Pfeiffers bisherige Forschung hat genau dies gezeigt, nämlich, dass auch mit verbesserten konventionellen Röntgengeräten ähnlich scharfe Bilder erzeugt werden können.

Die EU-Gelder sollen nun dazu dienen, im Laufe der nächsten fünf Jahre den ersten Prototypen eines neuartigen Röntgen-CT-Scanners zu bauen und in enger Zusammenarbeit mit Ärzten in den Uni-Kliniken rechts der Isar und Grosshadern erste vorklinische Versuche durchzuführen. Mit seiner Forschungsarbeit will Pfeiffer zudem die zukünftigen klinischen Anwendungsfelder erforschen und die Zusammenarbeit mit namhaften Medizingeräteherstellern intensivieren.

"Sollte es uns tatsächlich gelingen, dieses neue Röntgenverfahren in die klinische Praxis zu überführen", argumentiert Pfeiffer, "so würde der neue Kontrastmechanismus die Biomedizinische Bildgebung mit Röntgenstrahlen mehr als hundert Jahre nach deren Entdeckung grundlegend revolutionieren." "Die größte Hoffnung", so der Ärztliche Direktor der Klinik für Strahlentherapie und Radiologische Onkologie im Klinikum rechts der Isar, Prof. Dr. Michael Molls, "konzentriert sich beispielsweise auf die Möglichkeit, mit diesem hochempfindlichen Verfahren Tumoren in einem sehr frühen, für eine erfolgreiche Therapie besonders günstigen Stadium zu diagnostizieren. Das würde klinisch eine deutliche Verbesserung der Therapie von Krebstumoren bedeuten."

Pfeiffer war einer von mehr als 2500 Bewerbern aus 33 europäischen Ländern um den so genannten "ERC Starting Grant", den der European Research Council (ERC) in der Europäischen Union für junge Wissenschaftler reserviert, die gerade eine eigene unabhängige Arbeitsgruppe aufbauen und eine möglichst interdisziplinäre Forschung betreiben. Die Anträge dürfen für alle Forschungsgebiete gestellt werden, aber die überwiegende Zahl der Bewerbungen stammt aus der Physik, den Ingenieur- und Lebenswissenschaften. Insgesamt stellt die EU dafür 7,5 Milliarden € für fünf Jahre zur Verfügung. Nur sechs Wissenschaftler aus Deutschland konnten diese spezielle Förderung der EU erringen; Pfeiffer ist der Einzige aus Süddeutschland.

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de/
http://www.physik.tu-muenchen.de/personen/professoren/pfeiffer/info.htm

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie