Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert der Calcium-Stoffwechsel in einer Zelle?

31.10.2013
1,25 Mio. Euro für neue Emmy-Noether-Gruppe an der Universität Hamburg

Dr. Henning Tidow vom Institut für Biochemie und Molekularbiologie der Universität Hamburg wurde in das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) aufgenommen. Die neue Gruppe um Tidow wird mit mehr als 1,25 Millionen Euro für das Forschungsprojekt „Strukturelle Untersuchungen der Ca2+-gesteuerten Signaltransduktion und des Transports von Ca2+ durch biologische Membranen“ gefördert.

Die Forschungsgruppe der Universität Hamburg will herausfinden, wie verschiedene Proteine, die Calcium durch die Zellmembran befördern, aufgebaut sind und reguliert werden.

Calcium ist bei Menschen, Tieren sowie bei Pflanzen maßgeblich für die Kommunikation zwischen den Zellen im Organismus. Calcium-Ionen wirken als Botenstoff zwischen den Zellen und sind für die sogenannte Signaltransduktion, also die Weiterleitung von Sinnesreizen und Nervenimpulsen, verantwortlich. Die Calcium-Konzentration muss in allen Organismen genau reguliert werden, denn Störungen führen zu zahlreichen Krankheitserscheinungen.

Höher entwickelte Organismen besitzen deshalb in ihrer Zellmembran bestimmte Proteine, sogenannte Calciumpumpen und -kanäle. Calciumkanäle sind für den Transport des Calciums von außen in die Zelle verantwortlich, während Calciumpumpen Calcium aus der Zelle befördern. Bisher gibt es nur wenige Kenntnisse darüber, wie diese Calciumtransporter aussehen oder wie sie funktionieren. Ziel der Forschungsgruppe um Henning Tidow ist es, die Struktur, Funktion und Regulation der Calciumpumpen und -kanäle von verschiedenen Spezies – von einzelligen Parasiten bis zu Pflanzen und Säugetieren – zu untersuchen.

Die Ergebnisse können nicht nur einen entscheidenden Beitrag zur Grundlagenforschung leisten; ein weitergehendes strukturelles Verständnis der Kontrolle der zellulären Calciumkonzentration wird zudem Auswirkungen auf das Verständnis anderer Prozesse in den Zellen haben. Die Forschungsergebnisse könnten somit auch bei der Bekämpfung von Krankheiten helfen, deren Ursache ein gestörter Calciumhaushalt im Körper ist. Die neue Gruppe um Henning Tidow nimmt zum 1. November 2013 ihre Arbeit auf. Es ist geplant, die Arbeitsgruppe in das derzeit im Aufbau befindliche Centre for Structural Systems Biology (CSSB) auf dem DESY-Campus zu integrieren.

Henning Tidow studierte Biochemie an der Universität Bayreuth und der University of California, San Diego. Er promovierte an der University of Cambridge zum Thema Struktur des Tumorsuppressors p53. Anschließend forschte er ein Jahr als Junior Research Fellow am Trinity College, Cambridge und weitere vier Jahre an der Universität Aarhus in Dänemark an Struktur und Funktion von P-type ATPasen.

Das Emmy-Noether-Programm ermöglicht besonders herausragenden Nachwuchswissen-schaftlerinnen und -wissenschaftlern, sich durch die Leitung einer eigenen Nachwuchsgruppe für wissenschaftliche Führungsaufgaben zu qualifizieren.

Für Rückfragen:

Dr. Henning Tidow
Universität Hamburg
Institut für Biochemie und Molekularbiologie
Tel.: 040 42838-2841
E-Mail: henning.tidow@chemie.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

nachricht 1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)
05.12.2016 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten