Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Förderung für Bonner Teilchenphysiker

19.11.2013
Dr. Markus Cristinziani vom Physikalischen Institut der Universität Bonn ist mit einem Heisenberg-Stipendium der Deutschen Forschungsgemeinschaft (DFG) ausgezeichnet worden.

Im Rahmen des Heisenberg Programms bietet die DFG herausragenden Wissenschaftlern für mehrere Jahre die Möglichkeit, sich auf eine wissenschaftliche Leitungsfunktion vorzubereiten und in dieser Zeit weiterführende Forschungsthemen zu bearbeiten. Dr. Cristinziani hat sich für die Dauer seiner Förderung vorgenommen, die Wechselwirkung von elementaren Bausteinen der Materie zu messen.

Dr. Markus Cristinziani, Jahrgang 1972, studierte Physik an der Università di Milano, Universität Marburg und an der Université de Genève, wo er seine Diplomarbeit und seine Promotionsarbeit durchführte. Daraufhin folgte ein dreijähriger Forschungsaufenthalt am SLAC Labor, Stanford University, USA, bevor er 2005 nach Bonn in die Arbeitsgruppe von Prof. Dr. Norbert Wermes kam.

Markus Cristinziani erforscht das schwerste der fundamentalen Teilchen, das Top Quark. Von 2007 bis 2012 leitete er hierzu eine unabhängige Emmy-Noether-Nachwuchsgruppe. Im Rahmen der großen internationalen ATLAS-Kollaboration am Teilchenphysikzentrum CERN in Genf leitete Markus Cristinziani die ATLAS Top-Gruppe von 2010 bis 2012, die aus 250 Wissenschaftlern aus aller Welt bestand und die Produktion und Eigenschaften dieser ungewöhnlich schweren Teilchen genau vermessen hat.

Durch das Heisenberg-Stipendium in Höhe von rund 280.000 Euro wird Dr. Cristinziani nun die Kopplungen der so genannten Top Quarks an neutrale Bosonen, inklusive dem zuletzt gefundenen und jetzt berühmten Higgs-Boson, messen können. Er erklärt: „Nur mit größeren Datenmengen, wie sie in den nächsten Jahren zur Verfügung stehen werden, und mit ausgefeilten experimentellen Methoden können die Kopplungen bestimmt werden. Mein Ziel ist es, das Standardmodell der Teilchenphysik zu überprüfen und vielleicht erste Anzeichen Neuer Physik zu finden.“

Als „Neue Physik“ bezeichnet man die Physik jenseits des so genannten Standardmodells der Teilchenphysik, das die fundamentalen Teilchen und ihre Wechselwirkungen erklärt und das von experimentellen Ergebnissen gestützt wird. Aber unter extremen Bedingungen stößt das Standardmodell an seine Grenzen. Dr. Cristinziani sagt: „Es ist unwahrscheinlich, dass dies schon die endgültige Theorie ist, da wir z.B. nicht wissen, woraus dunkle Materie besteht, warum das Universum scheinbar nur noch aus Materie und nicht in gleichen Teilen aus Materie und Antimaterie besteht, oder warum das Higgs Boson so leicht ist. Einige der neuen Theorien, die Lösungen dieser Probleme bieten, sagen veränderte Kopplungen des Top Quarks voraus, und genau dies können wir überprüfen.“

Kontakt:
Dr. Markus Cristinziani
Physikalisches Institut der Universität Bonn
Telefon: 0228/73-5762
E-Mail: cristinz@uni-bonn.de

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie