Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Förderung der amerikanischen Moore-Stiftung für zerstörungsfreies „Quanten-Elektronenmikroskop“

11.10.2012
Die im Jahr 2000 gegründete Gordon and Betty Moore Stiftung mit Sitz im kalifornischen Palo Alto unterstützt ein breites Spektrum von Projekten – von Umweltprojekten und Patientenversorgung bis hin zur Förderung innovativer Grundlagenforschung.

In diesem Jahr gehört zu ihren ausgewählten Vorhaben die Entwicklung eines „Quanten-Elektronenmikroskops“, das insbesondere für die Untersuchung biologischer Proben einen großen Fortschritt bedeuten würde.

Drei Gruppen – die „Ultraschnelle Quantenoptik“ unter der Leitung von Prof. Peter Hommelhoff am Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Friedrich-Alexander-Universität Erlangen-Nürnberg, sowie jeweils ein Wissenschaftlerteam an der Stanford Universität (Stanford, USA) und am Massachusetts Institute of Technology (Boston, USA) werden an diesem Thema koordiniert forschen.

Jede Gruppe erhält über den Zeitraum von 40 Monaten 1.145 Millionen Dollar, also knapp eine Million Euro. Das Grundprinzip ihres neuen Messinstruments geht zurück auf die bahnbrechenden Arbeiten des diesjährigen Nobelpreisträgers für Physik, Prof. Serge Haroche vom Collège de France (Paris).

Dass Elektronen nicht nur elektrisch geladene Teilchen sind, sondern wie alle Quantenteilchen auch Wellencharakter haben, ist seit rund hundert Jahren bekannt. Ihre sogenannte de Broglie-Wellenlänge liegt, bei entsprechend hohen Energien, im Nano- bis Pikometerbereich (10-9 bis 10-12 Meter), weshalb sie sich hervorragend für die Abbildung von Strukturen beispielsweise biologischer Proben eignen – hier wird eine räumliche Auflösung auf atomarer und molekularer Skala erreicht. Elektronenmikroskope haben mittlerweile einen Stammplatz in Technik und Forschung, doch der Haken bei dieser Methode ist, dass die Proben eine sehr hohe Strahlendosis erhalten, die zu einer Schädigung ihrer Struktur führen kann. Während der Aufnahme eines einzigen elektronenmikroskopischen Bildes bekommt eine Zelle in etwa die Strahlendosis, die sie durch eine weniger als 50 Meter entfernte Atombombenexplosion erhalten würde.

Dieses Problem wollen die Wissenschaftler nun mit der Methode der wechselwirkungsfreien Messung umgehen. Die Grundidee dieses Messprinzips wurde bereits vor mehr als 20 Jahren für Photonen ersonnen. Im Allgemeinen gilt, dass der Zustand eines Quantenobjekts durch den Messprozess selbst verändert oder unter Umständen sogar zerstört wird. Bei dem neuen Messprinzip wird der Spieß gewissermaßen umgedreht: Nicht der Zustand des Objekts wird durch die Beobachtung gestört – vielmehr beeinflusst seine Anwesenheit die Quanteneigenschaften des Beobachters. Experimentell realisiert wurde das Prinzip bereits in einem Team von Prof. Serge Haroche anhand von Mikrowellenresonatoren. Deren Resonanzeigenschaften ändern sich, sobald sich ein einzelnes Atom darin befindet. Die Durchlässigkeit oder Undurchlässigkeit des Resonators für Licht bzw. Mikrowellen gibt nun Auskunft über die Anwesenheit des Atoms, ohne dessen Zustand zu zerstören, da Objekt und Photonen nicht direkt miteinander in Wechselwirkung stehen.

Diese Methode des Nachweises ohne klassische Wechselwirkung wollen die Wissenschaftler nun mit Elektronen praktizieren. Der Strahl freier Elektronen soll nicht wie bei herkömmlichen Elektronenmikroskopen direkt auf die Probe gerichtet werden. Aufschluss über die Beschaffenheit der Probe gibt vielmehr die Wirkung, die sie auf die Quanteneigenschaften der Elektronen hat, ganz analog zu der Wirkung, die das in einem optischen Resonator gespeicherte Atom auf die Durchlässigkeit eines Lichtstrahls hat. Verwirklichen ließe sich dieses Konzept mit einem Elektronenresonator, der aus zwei elektrisch leitenden, dicht übereinander angeordneten Drahtschlaufen besteht. Ein im oberen Ring umlaufendes Elektron kann aufgrund seiner Quanteneigenschaften mit einer bestimmten Wahrscheinlichkeit in den unteren herunter “tunneln“, und wieder zurück, und so weiter. Sobald sich aber in der unteren Schlaufe ein undurchsichtiges Objekt, z.B. eine mit Goldteilchen markierte Probe befindet, werden diese Oszillationen abgebrochen.

„Zunächst einmal müssen wir zeigen, dass die wechselwirkungsfreie Messmethode auch mit Elektronen funktioniert. Wir haben dafür bereits wichtige technische Voraussetzungen geschaffen, z.B. Wellenleiterstrukturen, mit denen wir die Quanteneigenschaften von Elektronen gezielt manipulieren und kontrollieren können“, erklärt Prof. Peter Hommelhoff. „Die Entwicklung zu einem Mikroskop, das biologische Proben nicht-invasiv und mit hoher Auflösung abbilden kann, ist dann der nächste Schritt. Das Quanten-Elektronenmikroskop würde die verabreichten Strahlendosen erheblich reduzieren und vermeiden, dass die Strukturen der untersuchten Objekte zerstört werden. Ein faszinierendes Ziel wäre es, damit auch Filme von lebenden Zellen zu drehen – mit der räumlichen Auflösung eines Elektronenmikroskops.“

Kontakt:
Prof. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Gewebe mit Hilfe von Stammzellen regenerieren
16.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Dr. Philipp Schommers erhält Förderpreis für Klinische Infektionsforschung
16.10.2017 | Uniklinik Köln

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz