Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Förderung der amerikanischen Moore-Stiftung für zerstörungsfreies „Quanten-Elektronenmikroskop“

11.10.2012
Die im Jahr 2000 gegründete Gordon and Betty Moore Stiftung mit Sitz im kalifornischen Palo Alto unterstützt ein breites Spektrum von Projekten – von Umweltprojekten und Patientenversorgung bis hin zur Förderung innovativer Grundlagenforschung.

In diesem Jahr gehört zu ihren ausgewählten Vorhaben die Entwicklung eines „Quanten-Elektronenmikroskops“, das insbesondere für die Untersuchung biologischer Proben einen großen Fortschritt bedeuten würde.

Drei Gruppen – die „Ultraschnelle Quantenoptik“ unter der Leitung von Prof. Peter Hommelhoff am Max-Planck-Institut für Quantenoptik (MPQ) in Garching und der Friedrich-Alexander-Universität Erlangen-Nürnberg, sowie jeweils ein Wissenschaftlerteam an der Stanford Universität (Stanford, USA) und am Massachusetts Institute of Technology (Boston, USA) werden an diesem Thema koordiniert forschen.

Jede Gruppe erhält über den Zeitraum von 40 Monaten 1.145 Millionen Dollar, also knapp eine Million Euro. Das Grundprinzip ihres neuen Messinstruments geht zurück auf die bahnbrechenden Arbeiten des diesjährigen Nobelpreisträgers für Physik, Prof. Serge Haroche vom Collège de France (Paris).

Dass Elektronen nicht nur elektrisch geladene Teilchen sind, sondern wie alle Quantenteilchen auch Wellencharakter haben, ist seit rund hundert Jahren bekannt. Ihre sogenannte de Broglie-Wellenlänge liegt, bei entsprechend hohen Energien, im Nano- bis Pikometerbereich (10-9 bis 10-12 Meter), weshalb sie sich hervorragend für die Abbildung von Strukturen beispielsweise biologischer Proben eignen – hier wird eine räumliche Auflösung auf atomarer und molekularer Skala erreicht. Elektronenmikroskope haben mittlerweile einen Stammplatz in Technik und Forschung, doch der Haken bei dieser Methode ist, dass die Proben eine sehr hohe Strahlendosis erhalten, die zu einer Schädigung ihrer Struktur führen kann. Während der Aufnahme eines einzigen elektronenmikroskopischen Bildes bekommt eine Zelle in etwa die Strahlendosis, die sie durch eine weniger als 50 Meter entfernte Atombombenexplosion erhalten würde.

Dieses Problem wollen die Wissenschaftler nun mit der Methode der wechselwirkungsfreien Messung umgehen. Die Grundidee dieses Messprinzips wurde bereits vor mehr als 20 Jahren für Photonen ersonnen. Im Allgemeinen gilt, dass der Zustand eines Quantenobjekts durch den Messprozess selbst verändert oder unter Umständen sogar zerstört wird. Bei dem neuen Messprinzip wird der Spieß gewissermaßen umgedreht: Nicht der Zustand des Objekts wird durch die Beobachtung gestört – vielmehr beeinflusst seine Anwesenheit die Quanteneigenschaften des Beobachters. Experimentell realisiert wurde das Prinzip bereits in einem Team von Prof. Serge Haroche anhand von Mikrowellenresonatoren. Deren Resonanzeigenschaften ändern sich, sobald sich ein einzelnes Atom darin befindet. Die Durchlässigkeit oder Undurchlässigkeit des Resonators für Licht bzw. Mikrowellen gibt nun Auskunft über die Anwesenheit des Atoms, ohne dessen Zustand zu zerstören, da Objekt und Photonen nicht direkt miteinander in Wechselwirkung stehen.

Diese Methode des Nachweises ohne klassische Wechselwirkung wollen die Wissenschaftler nun mit Elektronen praktizieren. Der Strahl freier Elektronen soll nicht wie bei herkömmlichen Elektronenmikroskopen direkt auf die Probe gerichtet werden. Aufschluss über die Beschaffenheit der Probe gibt vielmehr die Wirkung, die sie auf die Quanteneigenschaften der Elektronen hat, ganz analog zu der Wirkung, die das in einem optischen Resonator gespeicherte Atom auf die Durchlässigkeit eines Lichtstrahls hat. Verwirklichen ließe sich dieses Konzept mit einem Elektronenresonator, der aus zwei elektrisch leitenden, dicht übereinander angeordneten Drahtschlaufen besteht. Ein im oberen Ring umlaufendes Elektron kann aufgrund seiner Quanteneigenschaften mit einer bestimmten Wahrscheinlichkeit in den unteren herunter “tunneln“, und wieder zurück, und so weiter. Sobald sich aber in der unteren Schlaufe ein undurchsichtiges Objekt, z.B. eine mit Goldteilchen markierte Probe befindet, werden diese Oszillationen abgebrochen.

„Zunächst einmal müssen wir zeigen, dass die wechselwirkungsfreie Messmethode auch mit Elektronen funktioniert. Wir haben dafür bereits wichtige technische Voraussetzungen geschaffen, z.B. Wellenleiterstrukturen, mit denen wir die Quanteneigenschaften von Elektronen gezielt manipulieren und kontrollieren können“, erklärt Prof. Peter Hommelhoff. „Die Entwicklung zu einem Mikroskop, das biologische Proben nicht-invasiv und mit hoher Auflösung abbilden kann, ist dann der nächste Schritt. Das Quanten-Elektronenmikroskop würde die verabreichten Strahlendosen erheblich reduzieren und vermeiden, dass die Strukturen der untersuchten Objekte zerstört werden. Ein faszinierendes Ziel wäre es, damit auch Filme von lebenden Zellen zu drehen – mit der räumlichen Auflösung eines Elektronenmikroskops.“

Kontakt:
Prof. Peter Hommelhoff
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 89 32905 265
E-Mail: peter.hommelhoff@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Gesundes Altern: Neues EU-Projekt zur menschlichen Leber
23.08.2017 | Universität Bielefeld

nachricht Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich
23.08.2017 | PFH Private Hochschule Göttingen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie