Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt PECSYS strebt technologischen Durchbruch an

30.01.2017

Entwicklung von Vorführsystemen mit bis zu zehn Quadratmetern Fläche

Das HZB koordiniert ein EU-Projekt, das innerhalb von vier Jahren eine wirtschaftlich umsetzbare Technologie für die solare Wasserstofferzeugung entwickeln soll. Die Solarenergie wird dadurch in chemische Energie umgewandelt und im Brennstoff Wasserstoff gespeichert. Dabei sollen die Kosten unter fünf Euro pro Kilogramm Wasserstoff liegen. Zum Abschluss planen die Partner aus Deutschland, Schweden und Italien den Aufbau mehrerer Module mit einer Gesamtfläche von zehn Quadratmetern, um Stabilität und Ertrag auf großer Fläche zu demonstrieren.


Die Projektpartner haben sich Mitte Januar am HZB getroffen, um den „Startschuss“ zum Projekt zu geben.

HZB

Das Projekt läuft im Rahmen des EU-Forschungsprogramms Horizon2020 über vier Jahre und wird mit 2,5 Millionen Euro gefördert.

Die Photovoltaik deckt heute schon etwa 7,4 Prozent des Nettostrombedarfs, an sonnigen Wochenenden sogar bis zu 50 Prozent (Quelle: ISE). Doch nachts oder bei schlechtem Wetter liefern Solarzellen keinen Strom. Photovoltaikzellen lassen sich jedoch auch mit Elektrokatalysatoren kombinieren, um Wasser in seine Elemente Wasserstoff und Sauerstoff aufzuspalten.

Dieser solar erzeugte Wasserstoff ist ein vielseitiger Brennstoff, der die Energie des Sonnenlichts in chemischer Form speichert und sie bei Bedarf - z.B. nachts - über eine Brennstoffzelle wieder freisetzen kann. In den letzten Jahren hat die Forschung auf diesem Gebiet große Fortschritte erreicht. Jedoch gibt es – anders als bei der Photovoltaik – noch keinen groß angelegten Technologieansatz, der sich durchgesetzt hat. Mit anderen Worten: Das Rennen ist derzeit noch vollkommen offen.

Partner aus Deutschland, Italien und Schweden

Dies soll das EU-Projekt PECSYS nun schaffen: Das Projekt wird durch das Kompetenzzentrum Photovoltaik am HZB koordiniert, dabei bringen Partner aus dem Forschungszentrum Jülich, der Universität Uppsala, Schweden, dem Consiglio Nazionale delle Richere, Italien sowie die Unternehmen Solibro Research AB, Schweden und 3SUN, Italien, ihre Expertise ein.

Wirkungsgrad 6 Prozent, 6 Monate stabil

„Die Ziele des Projektes sind ehrgeizig und sehr konkret“, erläutert HZB-Forscherin Dr. Sonya Calnan, Sprecherin des EU-Projekts. Das zu entwickelnde Vorführsystem soll auf einer Fläche von mehr als zehn Quadratmetern realisierbar sein, mehr als sechs Prozent der Solarenergie chemisch umwandeln und mindestens sechs Monate lang stabil funktionieren. Der so erzeugte Wasserstoff soll weniger als fünf Euro pro Kilo kosten. Zum Vergleich: Aktuell liegt der Marktpreis für Wasserstoff bei acht Euro pro Kilogramm.

Bauelement aus einem Block

Am PVcomB werden die beteiligten Projektteams Photovoltaikzellen aus unterschiedlichen Materialien (Silizium, Chalkogenide, Tandemsolarzellen aus Perowskit und Silizium) zusammen mit Elektrokatalysatoren und Membranen testen und auch geeignete Versiegelungen entwickeln. Ziel ist es, ein Bauelement aus „einem Block“ zu entwickeln, das auch bei extremen Umweltbedingungen noch einwandfrei funktioniert.

Mehr als zehn Kg Wasserstoff

Die beteiligten Projektteams wollen so ein System identifizieren, das sich für die industrielle Produktion eignet. Die Vorführsysteme sollen dann am Forschungszentrum Jülich und/oder bei 3Sun mit einer Gesamtfläche von zehn Quadratmetern stehen und innerhalb von sechs Monaten mehr als zehn Kilogramm Wasserstoff erzeugen.

Das Projekt wird von „Fuel Cells and Hydrogen 2 Joint Undertaking“ unter der Nummer 735218 gefördert. Joint Undertaking wird unterstützt durch das Horizon 2020 und Innovationsprogramm der europäischen Union, Hydrogen Europe und N.ERGHY.

Kontakt:
Dr. Sonya Calnan
E-Mail: sonya.calnan@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
Tel: 030/8062-43733
E-Mail: antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14608&sprache=de&ty...

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics