Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Millionenförderung für FMP-Biophysiker - Biosensoren verbessern molekulare Bildgebung

21.09.2009
Dr. Leif Schröder vom Leibniz-Institut für Molekulare Pharmakologie (FMP) erhält vom Europäischen Forschungsrat (engl. Abkürzung ERC) in den kommenden fünf Jahren fast zwei Millionen Euro Forschungsgelder für die Entwicklung von Biosensoren, mit deren Hilfe sich bildgebende Verfahren verbessern lassen.

Der Biophysiker Dr. Leif Schröder vom Leibniz-Institut für Molekulare Pharmakologie (FMP) auf dem Campus Berlin-Buch erhält vom Europäischen Forschungsrat (engl. Abkürzung ERC) in den kommenden fünf Jahren fast zwei Millionen Euro Forschungsgelder.

Dr. Schröder leitet seit Sommer dieses Jahres eine Nachwuchsgruppe zur molekularen Bildgebung am FMP, einem Institut im Forschungsverbund Berlin e.V. (FVB) und Mitglied der Leibniz-Gemeinschaft. Mit Schröder und der Diabetesforscherin Dr. Francesca M. Spagnoli vom Max-Delbrück-Centrum für Molekulare Medizin (MDC) gehören zwei Wissenschaftler vom Campus Berlin-Buch zu den rund 240 Spitzenforschern, die der ERC aus 2 503 Bewerbern für die Förderung ausgewählt hat.

Dr. Leif Schröder genießt internationale Anerkennung für seine Forschung zu Xenon-Biosensoren, mit deren Hilfe die molekulare Bildgebung sensitiver und informationsreicher wird. Xenon-Biosensoren sind Messfühler, die mit dem Edelgas Xenon sowie einem biochemischen Molekül verbunden sind. Sie können in Zellen eindringen, an spezifische Strukturen binden und mittels Magnetresonanzverfahren dargestellt werden. Damit lassen sie sich als Kontrastmittel in der Bildgebung einsetzen. Langfristig sollen sie zur frühen Erkennung krankhafter Veränderungen beitragen.

Biomedizinische Grundlagenforschung und Diagnostik sind auf die genaue Darstellung von Zellen, Geweben und Organen angewiesen. Mithilfe von Bildern lassen sich normale Strukturen und Funktionen sowie ihre krankhaften Veränderungen auf zellulärer und molekularer Ebene erkennen und beschreiben. Dr. Schröders Arbeit mit Xenon-Biosensoren hat zum Ziel, Sensitivität und Informationsgehalt der Aufnahmen zu verbessern, die durch Magnetresonanzverfahren gewonnen werden.

Die Magnetresonanzbildgebung (engl. Magnetic Resonance Imaging, MRI) ist eines der aussagekräftigsten bildgebenden Verfahren mittels dessen Schnittbilder von menschlichen (oder tierischen) Körpern erzeugt werden. Die Beurteilung von Organen und ihren krankhaften Veränderungen im frühen Stadium wird jedoch derzeit durch die limitierte Sensitivität und Spezifizität von MRI-Aufnahmen erschwert.

Hier setzt die Forschung des Biophysikers an. Zur Verbesserung des Kontrastes verwendet Dr. Schröder funktionalisierte Xenon-Biosensoren als Messfühler oder Kontrastmittel. Durch ihre Kombination mit einem Sensor-Molekül binden solche Moleküle spezifisch an Zellstrukturen und ermöglichen die Erkennung von krankheitsbedingten Veränderungen. "Zum Beispiel ist es nach dem derzeitigen Forschungsstand vorstellbar, dass Xenon-Biosensoren zur Früherkennung von Krebs eingesetzt werden", erläutert Dr. Schröder. Bislang konnte er in stark vereinfachten Modellen zeigen, dass Xenon-Biosensoren die Anwesenheit eines biochemischen Ziel-Moleküls schon bei sehr geringen Konzentrationen darstellen können, etwa 10 000 mal besser als konventionelle MR-Kontrastmittel. Für die Entwicklung dieser Methode erhielt Dr. Schröder - neben weiteren renommierten Preisen - den "Gorter Award" der "International Society for Magnetic Resonance in Medicine" und im September 2009 den "Young Scientist Award in Medical Physics" der "International Union for Pure and Applied Physics" (IUPAP).

"Das Besondere an dieser Technologie ist eine neuartige Detektionsmethode, bei der einige wenige Biosensoren ihre Information auf nahezu alle verfügbaren Xenon-Atome übertragen und dadurch für einen enormen Verstärkungseffekt sorgen. Die Messzeit zum Testen, ob ein bestimmter Biosensor in der Zielstruktur anwesend ist oder nicht, konnte bereits um einen Faktor 16 Millionen verkürzt werden. Damit ist es erstmals möglich, mit MRI-Aufnahmen Moleküle in geringen Konzentrationen festzustellen, die sonst nur mit nuklearmedizinischen Methoden zugänglich sind", erläutert Schröder.

Dr. Schröder studierte Physik und Chemie an den Universitäten Göttingen und Heidelberg, wo er 2003 promovierte. Nach einem vierjährigen Aufenthalt in Berkeley an der University of California im Labor von Prof. Alexander Pines kehrte er im Sommer dieses Jahres als Emmy-Noether-Stipendiat der DFG nach Deutschland zurück, um am FMP eine Nachwuchsgruppe zur Molekularen Bildgebung aufzubauen. Mit seiner Arbeitsgruppe will er nun die Erkenntnisse zum Einsatz von Xenon-Biosensoren in der molekularen Bildgebung weiterentwickeln. Vor allem geht es ihm als nächsten Schritt darum, sie in biologischen Systemen im Labor oder im Organismus anzuwenden. Am Ende dieses Prozesses wird der Einsatz von Xenon-Biosensoren in Tiermodellen stehen. Damit wird Dr. Schröder einem Einsatz in der Krebsfrüherkennung entscheidend näher kommen.

Der Europäische Forschungsrat, 2007 von der Europäischen Kommission eingerichtet, wird vom 7. Rahmenprogramm der Europäischen Union finanziert.

Dr. Almut Caspary
Robert-Rössle-Straße 10
13125 Berlin
Tel.: +49 (0) 30 94793 102
Fax: +49 (0) 30 94 793 109
e-mail: caspary@fmp-berlin.de

Almut Caspary | idw
Weitere Informationen:
http://www.fmp-berlin.de/
http://erc.europa.eu/index.cfm
http://www.mdc-berlin9/.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Berührungslose Ladesysteme
16.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Studenten nehmen mit Frühwarnsystem für Geisterfahrer an internationalem Wettbewerb in Peking teil
15.11.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spin-Strom aus Wärme: Neues Material für höhere Effizienz

20.11.2017 | Physik Astronomie

Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich

20.11.2017 | Biowissenschaften Chemie

Fall aus dem Datenrettungslabor – USB Sticks mit fehlerhaften Angaben

20.11.2017 | Unternehmensmeldung