Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Synergy Grant: Mehr als zehn Millionen Euro für Quanten-Mikroskopie in der Biologie

07.12.2012
Außerordentlicher Erfolg für die Universität Ulm: Wissenschaftler um Professor Martin Plenio haben einen Synergy Grant des Europäischen Forschungsrats (European Research Council/ERC) erhalten. In den kommenden sechs Jahren wird die Gruppe „Quantum Devices and Biology“ (BioQ) mit rund 10,3 Millionen Euro gefördert.

Dabei handelt es sich um das höchst dotierte Förderinstrument der Europäischen Union, das 2012 erstmals vergeben wurde. Als übergeordnetes Ziel wollen die Ulmer Forscher eine neue Art der Sensorik entwickeln und so Strukturen und strukturelle Änderungen von einzelnen Molekülen in biologischen Systemen sichtbar machen. Künstlich hergestellte Quantennanodiamanten sollen diese Einblicke ermöglichen.

„Die Auszeichnung ist ein schöner Beweis für die Forschungsstärke unserer Universität. Die bewilligten Fördergelder ermöglichen uns die erfolgreiche Weiterentwicklung der zukunftsweisenden Quanten-Mikroskopie zur Erforschung biologischer Vorgänge. Hier wollen wir neue Maßstäbe setzen und ein weltweites Spitzenzentrum aufbauen“, kommentiert Universitätspräsident Professor Karl Joachim Ebeling den Erfolg. Freude auch bei dem BioQ-Sprecher Martin Plenio: „Die großzügige Unterstützung des ERC versetzt uns in die Lage, wirklich aufregende Forschung mit hohem Risiko zu verfolgen.“

In einem zweistufigen Begutachtungsprozess samt Interview und Präsentation in Brüssel haben sich die Ulmer Professoren Martin Plenio, Tanja Weil und Fedor Jelezko gegen 720 weitere Forschergruppen durchgesetzt. Nur 16 Anträge erreichten die letzte Runde. Die Universität Ulm erhielt als einzige Hochschule in Baden-Württemberg eine Förderzusage. Mit einem Synergy Grant unterstützt der Europäische Forschungsrat hervorragende, innovative und risikoreiche Wissenschaft, oft zwischen den Disziplinen.

Beste Voraussetzungen für BioQ: Mit ihrer gebündelten Expertise wollen die Ulmer Forscher neue Messmethoden im Grenzbereich von Physik, Chemie und Biologie entwickeln. Als hochsensitive Quantensensoren sollen Nanodiamanten Strukturen und Funktionen einzelner Bio-Moleküle sichtbar machen. Molekulare Prozesse in lebenden Zellen werden in atomarer Auflösung bis in den Quantenbereich beobachtbar. Praktische Anwendungen dieses nicht-invasiven, bildgebenden Verfahrens ergeben sich zum Beispiel in der Medikamentenentwicklung, bei der Wirkmechanismen von Arzneistoffen genau verstanden werden müssen.

Ein weiterer Schwerpunkt der Gruppe liegt auf der Quantenbiologie: In diesem neuen Forschungsfeld werden mögliche Auswirkungen der Quantenmechanik auf biologische Prozesse in Menschen, Tieren und Pflanzen untersucht – unter anderem mit den neuartigen Messmethoden. Möglicherweise beeinflussen Quanteneffekte die Photosynthese von Pflanzen, den menschlichen Geruchssinn oder die Magnetfeldwahrnehmung von Vögeln. In jedem Fall müssen die Forscher ein komplexes Zusammenspiel verschiedenster Faktoren in biologischen Systemen verstehen.

Außerdem werden im Zuge von BioQ Sensoren und Materialien hergestellt, deren Funktion auf Quanteneffekten beruht. Diese Neuentwicklungen sollen auch bei Raumtemperatur sowie unter warmen, wässrigen und geräuschvollen Bedingungen funktionieren – eine große Herausforderung. Ein künftiges Anwendungsfeld sind Quantensimulatoren, die eine modellhafte Darstellung komplexer Quantenphänomene – zum Beispiel für die Materialwissenschaften – ermöglichen.

Die Forschungsziele des Projekts BioQ sind ambitioniert, die Reputation der beteiligten Wissenschaftler ist hervorragend: „Wir sind ein wirklich interdisziplinäres Team, in dem jeder einen wesentlichen Beitrag zum Gelingen liefert. Nur gemeinsam können wir diese Ziele gemeinsam mit unseren Mitarbeitern erreichen“, sagt Martin Plenio. Der Leiter des Instituts für Theoretische Physik gilt im Bereich Quanteninformationstheorie als weltweit führend. Zudem hat der Inhaber einer renommierten Alexander von Humboldt-Professur mit Professorin Susana Fernández Huelga Pionierarbeiten in der Untersuchung von Quanteneffekten in biologischen Systemen geleistet.

Demgegenüber steht Professor Fedor Jelezko, Leiter des Ulmer Instituts für Quantenoptik, für grundlegende Forschung zur Manipulation der kleinsten Teilchen in Festkörpern – vor allem in extrem reinen, künstlich hergestellten Diamanten. Seine Forschung ebnet den Weg zu hochpräzisen Sensoren und verbesserten bildgebenden Verfahren.

Professorin Tanja Weil, Leiterin des Instituts für Organische Chemie III, bereichert BioQ mit ihrem Wissen um individuell hergestellte Biomakromoleküle und deren Wechselwirkungen mit Zellen. „Wie verhalten sich Nanomaterialien in biologischen Systemen? Und wie kann man sie gezielt zum Wirkort transportieren und an biologische Strukturen anknüpfen?“ sind weitere wichtige Forschungsfragen der Wissenschaftlerin.

In Zukunft könnte die Einrichtung eines Instituts für Quantenmikroskopie dazu beitragen, Schwerpunkte des Projekts BioQ dauerhaft an der Universität Ulm zu etablieren.

Der Europäische Forschungsrat mit Sitz in Brüssel fördert seit 2007 hervorragende Grundlagenforschung – auch mit dem Ziel, Standorte der Europäischen Union für führende Wissenschaftler attraktiver zu machen. Erstmals konnten sich Gruppen von zwei bis vier Spitzenforschern 2012 um einen Synergy Grant bewerben.

Weitere Informationen:
Prof. Dr. Tanja Weil, Tel.: 0731 50-22871

Annika Bingmann | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationen in der Bionik gesucht!
18.01.2018 | VDI Verein Deutscher Ingenieure e. V.

nachricht Fraunhofer HHI erhält AIS Technology Innovation Award 2018 für 3D Human Body Reconstruction
17.01.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

18.01.2018 | Informationstechnologie

Optimierter Einsatz magnetischer Bauteile - Seminar „Magnettechnik Magnetwerkstoffe“

18.01.2018 | Seminare Workshops

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungsnachrichten