Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Starting Grants für zwei KIT-Wissenschaftler

20.06.2011
Wie lassen sich Daten schneller und zugleich energieeffizienter übertragen? Damit befasst sich eine Forschergruppe zur Terabitkommunikation unter Leitung von Professor Christian Koos am Institut für Photonik und Quantenelektronik (IPQ) des KIT.

An einem neuen Verfahren, hochdichte Peptidarrays – kleinste „Datenträger“ mit Aminosäuren – für die Immunologie und Arzneimittelentwicklung herzustellen, arbeitet PD Dr. Alexander Nesterov-Müller vom Institut für Mikrostrukturtechnik (IMT). Beide Wissenschaftler haben nun je einen der begehrten ERC Starting Grants eingeworben.

Sie erhalten für ihre Projekte eine Förderung von je rund 1,5 Millionen Euro, verteilt auf fünf Jahre. Mit dem Starting Independent Researcher Grant fördert der Europäische Forschungsrat (ERC – European Research Council) über das spezifische Programm „Ideen“ im 7. EU-Forschungsrahmenprogramm bahnbrechende Projekte von Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern. Der Starting Grant 2011 ist die vierte Ausschreibung. Bereits 2009 und 2010 hatte mit der Physikerin Dr. Regina Hoffmann und dem Klimaforscher Dr. Matthias Schneider je ein KIT-Wissenschaftler den begehrten Grant eingeworben. 2011 gingen insgesamt 4080 Anträge ein; rund 450 Projekte können in dieser Runde gefördert werden.

Der weltweite Datenverkehr wächst unaufhörlich – und benötigt immer mehr Energie. Im Jahr 2007 war die Informations- und Kommunikationstechnik bereits für rund zehn Prozent des Stromverbrauchs in Deutschland verantwortlich, ein erheblicher Teil davon wurde für die Datenübertragung in Rechenzentren, Zugangs- und Weitverkehrsnetzen aufgewendet. Die Datenübertragung schneller und zugleich energieeffizienter zu machen, ist Ziel der Forschergruppe „Energieeffiziente Terabitkommunikation“, die Professor Christian Koos mit den ERC-Fördermitteln am IPQ aufbaut.

Mithilfe von neuen Übertragungstechniken, optischen Frequenzkämmen und nanophotonischen Bauteilen soll die Übertragungsrate in Datennetzen von derzeit 100 Gigabit pro Sekunde um einen Faktor 100 auf über 10 Terabit pro Sekunde steigen. „Das entspricht etwa einer Milliarde Telefongespräche“, erklärt Professor Koos. Dazu werden optische Frequenzkämme genutzt, die aus einem regelmäßigen Muster von Frequenzlinien bestehen. Man kann Frequenzkämme beispielsweise als optisches Lineal verwenden, um die Frequenz von elektromagnetischer Strahlung höchst präzise zu messen. In der Kombination mit nanophotonischen Bauteilen, die eine hohe Zahl von Nanostrukturen auf einem winzigen Siliziumchip vereinen, ermöglichen optische Frequenzkämme die energieeffiziente Verarbeitung von Datenströmen mit hohen Übertragungsraten auf kleinstem Raum.

An einem neuen Verfahren, hochdichte Peptidarrays mithilfe von Laserstrahlung herzustellen, arbeitet PD Dr. Alexander Nesterov-Müller am Institut für Mikrostrukturtechnik (IMT) des KIT in seinem ERC-geförderten Projekt. Peptide sind Ketten von Aminosäuren, die sich mit der neuen Methode auf verschiedenen Oberflächen wie Glasobjektträger oder Siliziumscheiben synthetisieren lassen. Solche Peptidarrays werden in den Lebenswissenschaften eingesetzt, wo immer eine spezifische Bindung mit Peptiden relevant ist. Das betrifft vor allem das Erforschen der Proteine und ihrer Wechselwirkungen in Zellen und Lebewesen (Proteomforschung), die Immunologie, aber auch die Diagnostik und die Entwicklung von Arzneimittelwirkstoffen. „Hochdichte Peptidarrays dienen unter anderem dazu, Antigen-Antikörper-Wechselwirkungen zu erforschen. Damit rückt beispielsweise das vollständige Auslesen der im menschlichen Immunsystem abgelegten Informationen in den Bereich des Möglichen“, erläutert Nesterov-Müller.

Bei dem in enger Kooperation mit PD Dr. Frank Breitling entwickelten neuen Verfahren werden die Aminosäuren, aus denen die Peptide aufgebaut sind, nicht in einer Lösung, sondern durch definiertes Anschmelzen von festen Partikeln mithilfe von Laserstrahlung punktgenau aufgebracht. So wird die Herstellung hochdichter Peptidarrays mit bis zu einer Million Peptiden pro Quadratzentimeter möglich. Parallel dazu arbeitet Dr. Alexander Nesterov daran, molekulare Suchmaschinen zu realisieren, mit denen sich Moleküle mit gewünschten Materialeigenschaften möglichst effizient auf Basis der hochdichten Arrays entwickeln lassen. Eine derartige molekulare Suchmaschine ließe sich in verschiedenen Bereichen der Lebenswissenschaften und der Materialwissenschaften einsetzen, beispielsweise bei der Entwicklung von Biokatalysatoren.

Professor Christian Koos hat seit 2010 den Lehrstuhl für Photonische Kommunikationstechnik am Institut für Photonik und Quantenelektronik (IPQ) des KIT inne. Er studierte Elektrotechnik an der Universität Karlsruhe (TH), erwarb 2002 sein Diplom und schloss 2007 seine Promotion ab. Von 2007 bis 2008 war er als Postdoktorand am IPQ tätig und leistete wegweisende Forschung zu nanophotonischen Silicon-Organic Hybrid (SOH) Bauteilen. Von 2008 bis 2010 leitete er die Technologieradare für Nanotechnologie und Messtechnik in der Konzernforschung der Carl Zeiss AG. Heute forscht Christian Koos vor allem auf den Gebieten der Nanophotonik sowie der optischen Datenübertragung und Messtechnik.

PD Dr. Alexander Nesterov-Müller ist seit 2010 am Institut für Mikrostrukturtechnik (IMT) und als Dozent an der Fakultät für Maschinenbau des KIT tätig. Er studierte von 1992 bis 1998 Physik an der Lomonosow-Universität Moskau. Von 1998 bis 2000 arbeitete er als Wissenschaftlicher Mitarbeiter am Institute on Laser and Information Technologies Moskau/Schatura, 2001 war er am Institut für Festkörper- und Werkstoffforschung in Dresden tätig. Von 2002 bis 2003 war er als Wissenschaftlicher Mitarbeiter am Heinrich-Hertz-Institut für Nachrichtentechnik Berlin beschäftigt. 2003 bis 2010 forschte er in der Arbeitsgruppe „Chip-Based Peptide Libraries“ am Deutschen Krebsforschungszentrum in Heidelberg. An der Universität Heidelberg promovierte er 2006 und habilitierte 2008. Aktuell forscht Dr. Alexander Nesterov-Müller vor allem auf dem Gebiet der Herstellung und Weiterentwicklung von partikel-basierten hochdichten molekularen Arrays und deren Anwendung für evolutionäre Suchmaschinen.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Margarete Lehné
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-43658
E-Mail: margarete.lehne@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht „Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges
26.06.2017 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht Hochschule Karlsruhe: mit speichenlosem Fahrrad Kreativwettbewerb gewonnen
26.06.2017 | Hochschule Karlsruhe - Technik und Wirtschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie