Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC-Grant für die Erforschung ionischer Flüssigkeiten

31.05.2016

Im harten Wettbewerb um europäische Fördergelder hat sich erneut ein FAU-Wissenschaftler durchgesetzt: Für sein Projekt „Ionic Liquid Interface Dynamics“ erhält Prof. Dr. Hans-Peter Steinrück vom Lehrstuhl für Physikalische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) einen der begehrten ERC Advanced Grants in Höhe von 2,5 Millionen Euro bei einer Laufzeit von fünf Jahren. Im Mittelpunkt steht die Grundlagenforschung auf dem Gebiet ionischer Flüssigkeiten, die in der industriellen Anwendung zum Beispiel zur effizienteren Herstellung neuartiger Chemikalien führen kann.

Ionische Flüssigkeiten haben einen unschlagbaren Vorteil: Anders als bestimmte konventionelle Substanzen, wie sie zum Beispiel in Nagellack enthalten sind, verdampfen diese Salze nicht. Aufgrund ihrer physikalisch-chemischen Eigenschaften kann man sie fast beliebig verändern und damit zum Beispiel für die Katalyse in spezifischen chemischen Prozessen und großtechnischen industriellen Verfahren maßschneidern.

Mit einigen ionischen Flüssigkeiten kann man einen ähnlichen Effekt wie eine Teflonbeschichtung erreichen. „Unser Ziel ist es jedoch nicht, den Lotusblüten-Effekt zu ersetzen, sondern zum Beispiel dünne Antikorrosionsbeschichtungen auf ein wertvolles Material aufzubringen“, sagt Prof. Dr. Hans-Peter Steinbrück. Der aus ionischen Flüssigkeiten bestehende Film ist luftundurchlässig und unterbindet daher das Rosten.

Dieses mögliche Anwendungsszenario zeigt, womit sich Hans-Peter Steinrück und sein Team beschäftigen. „Wir untersuchen sowohl die Oberflächen als auch die Grenzflächen von ionischen Flüssigkeiten“, erläutert Steinrück. „Mit dem Projekt unternehmen wir einen bahnbrechenden Schritt von der gegenwärtigen Kenntnis der statischen Eigenschaften hin zu einer aktiven Kontrolle der an den Grenzflächen von ionischen Flüssigkeiten ablaufenden dynamischen Prozesse“, sagt Steinrück.

Das Ziel ist einerseits, die Beschaffenheit von Grenzflächen zu analysieren und auf der atomaren Ebene zu untersuchen, wie sich ultradünne Filme aus ionischen Flüssigkeiten bilden, wenn diese auf einen Feststoff aufgetragen werden. Andererseits sollen chemische Reaktionen in ionischen Flüssigkeiten in situ studiert werden – also während der Prozess abläuft und nicht erst danach, wenn lediglich das Endergebnis betrachtet werden würde. Die dabei gewonnenen Erkenntnisse können später in der industriellen Anwendung die katalytische Herstellung neuartiger Chemikalien ermöglichen.

Weil ionische Flüssigkeiten im Gegensatz zu konventionellen Flüssigkeiten nicht verdampfen, können sie insbesondere mit den Methoden der Oberflächenforschung, die auf Vakuum angewiesen sind, in Bezug auf ihre Grenzflächeneigenschaften untersucht werden. Sehr gutes Vakuum ist – ähnlich wie bei den alten Fernsehröhren – notwendig, da sonst die für die Messung verwendeten Elektronen oder Ionen mit den Gasmolekülen zusammenstoßen würden, was die Messergebnisse verfälscht. Um die Flüssigkeiten auf atomarer Ebene chemisch zu analysieren, nutzen die FAU-Forscher speziell die Röntgenphotoelektronenspektroskopie und die Rastertunnelmikroskopie.

Über den Preis des Europäischen Forschungsrates in Höhe von 2,5 Millionen Euro freut sich Hans-Peter Steinrück sehr. „Der Preis ist für mich ein absolutes Highlight.“ ERC Grants basieren auf zwei Kriterien: der persönlichen Exzellenz und der Qualität des Forschungsvorhabens. „Ich verstehe den Preis einerseits für mich persönlich, und natürlich auch für meine Gruppe, als große Auszeichnung, die die weltweite Anerkennung unserer Arbeiten dokumentiert, und andererseits als Auftrag, das von mir initiierte und sehr ambitionierte Projekt zum Erfolg zu führen.“

Prof. Dr. Hans-Peter Steinrück gilt auf dem Gebiet der Oberflächenforschung im Ultrahochvakuum als international anerkannter Experte. Bereits seit mehr als zehn Jahren betreibt der 1959 geborene Österreicher die Grundlagenerforschung ionischer Flüssigkeiten. Mit der Erforschung der physikalischen und chemischen Eigenschaften von Oberflächen beschäftigt er sich seit 30 Jahren. Nach Studium und Promotion an der Technischen Universität Graz und einem Postdoc-Aufenthalt an der Stanford University (USA) habilitierte er 1992 an der Technischen Universität München in Experimentalphysik. Dem Aufenthalt als Gastwissenschaftler an der Rutgers University (USA) folgte eine Professur für Experimentalphysik an der Universität Würzburg. Seit 1998 lehrt und forscht er am Department für Chemie und Pharmazie der FAU. Der Spitzenforscher ist Mitglied zahlreicher Akademien der Wissenschaften, Gutachtergremien und Beiräte.

Weitere Informationen:
Prof. Dr. Hans-Peter Steinrück
Tel: 09131/85-27343
hans-peter.steinrueck@fau.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht „Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges
26.06.2017 | Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH

nachricht Hochschule Karlsruhe: mit speichenlosem Fahrrad Kreativwettbewerb gewonnen
26.06.2017 | Hochschule Karlsruhe - Technik und Wirtschaft

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie