Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energieforscher am INM erhält Bayer-Preis in der Kategorie „Materialien“ in Höhe von 10.000 Euro

28.01.2013
Solar- und Windkraftanlagen erzeugen viel Strom, wenn die Sonne scheint oder der Wind weht. Je nach Wetterlage wird so innerhalb kurzer Zeit sehr viel Strom produziert.

Große Teile dieses „grünen Stroms“ sind nur nutzbar, wenn sie zuverlässig und kostengünstig gespeichert werden können. Bisher fehlen umweltfreundliche, kostengünstige und hocheffiziente Speicherkonzepte, die für die Energiewende dringend benötigt werden.

Für seine Pionierarbeit und Forschungstätigkeiten an solchen elektrischen Energiespeichern erhielt Volker Presser vom INM –Leibniz-Institut für Neue Materialien nun den “Bayer Early Excellence in Science Award 2012“ in der Kategorie “Materialien”, in Höhe von 10.000 Euro.

Zentrale Technologie hinter der preisgekrönten Arbeit sind Doppelschichtkondensatoren. Sie funktionieren nach einem einfachen Prinzip: Ionen in einem flüssigen Elektrolyten werden an je eine positiv und eine negativ geladene Elektrode angelagert, die über eine nicht-leitende Folie, den sogenannten porösen Separator, getrennt sind. Durch die Paarung von Ionen und Elektronen an der Grenzfläche zwischen Elektrolyt und poröser Elektrode bildet sich dabei eine elektrochemische Doppelschicht aus. Die darin gespeicherte Energie kann in Sekunden wieder freigegeben werden.

Presser‘s Ziel ist es, in den Doppelschichtkondensatoren eine höhere Energiedichte zu erzielen, ohne ihre extreme Langlebigkeit zu beeinträchtigen, die bis zu 25 Jahre beträgt. „Je mehr positive und negative Ladungen sich anhäufen und je schneller die Ladungen wandern können, umso größer ist die Speicherkapazität und die Leistung von Doppelschichtkondensatoren“, erklärt der Nachwuchswissenschaftler.

Das erreicht die Forschungsgruppe um Presser einerseits durch den Einsatz hochporöser Kohlenstoffe. Denn durch die extrem große spezifische Oberfläche lassen sich Elektroden mit bestmöglicher Porengröße herstellen. Dennoch bleibt die Speicherkapazität und Energiedichte von Doppelschichtkondensatoren mit den heutigen Materialien begrenzt und liegt noch weit unter derjenigen von Batterien.

„Unsere Idee ist, ein ‚bisschen Batterie‘ in den Doppelschichtkondensator einzubauen“, sagt Presser und führt weiter aus: „Dazu arbeiten wir in die Elektroden entweder Metalloxide als Nanopartikel ein, oder verwenden hochleistungsfähige Elektrolyte, die extrem hohe Energiedichten ermöglichen, ohne strukturell dabei Schaden zu nehmen. Alle drei Ansätze werden dazu beitragen, eine entscheidende Frage zu beantworten: Wie können wir hocheffizient und auf umweltverträglichen Materialien beruhend kostengünstig Energie speichern? Denn nur dann können wir auch im gesellschaftlichen Kontext einen echten Beitrag zur Energiewende leisten“, schließt Presser.

Hintergrund:
Der Bayer Early Excellence in Science Award 2012” wird von der „Bayer Science & Education Foundation“ vergeben. Diese Stiftung verfolgt als vorrangige Ziele die Ehrung herausragender Forschungsleistungen, die Förderung wissenschaftlicher Talente und die Unterstützung bedeutender, naturwissenschaftlicher Schulprojekte. Im inhaltlichen Fokus der Fördertätigkeiten stehen Technik, Naturwissenschaften und Medizin. Dieser internationale Preis wird seit 2009 jährlich in den drei Kategorien Biologie, Chemie und Materialien vergeben. Die Preisvergabe erfolgt aufgrund der Originalität und der Qualität der Forschung der Kandidaten, sowie der Signifikanz der Ergebnisse für die jeweilige Kategorie.

Die Preisverleihung erfolgt am 17. Mai auf dem Saarbrücker Campus.

Ansprechpartner:
Dr. Volker Presser
INM – Leibniz-Institut für Neue Materialien gGmbH
Programmbereich Energie-Materialien
Tel: 0681-9300-177
E-Mail: volker.presser@inm-gmbh.de
Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen?

Das INM - Leibniz-Institut für Neue Materialien gGmbH mit Sitz in Saarbrücken ist ein international sichtbares Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V. und beschäftigt rund 180 Mitarbeiter. Seine Forschung gliedert sich in die drei Felder Chemische Nanotechnologie, Grenzflächenmaterialien und Materialien in der Biologie.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de/
http://www.leibniz-gemeinschaft.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

nachricht 1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)
05.12.2016 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik