Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effiziente Energiespeicher im Fokus

15.02.2017

Nachwuchswettbewerb „NanoMatFutur“: BMBF fördert Projekt von Dr. Matthias Elm mit rund 1,4 Millionen Euro – Neue Nachwuchsgruppe am Zentrum für Materialforschung der Universität Gießen

Dr. Matthias Elm wird im neu gegründeten Zentrum für Materialforschung (LaMa) der Justus-Liebig-Universität Gießen (JLU) eine Nachwuchsgruppe aufbauen. Im Rahmen des Nachwuchswettbewerbs „NanoMatFutur“ des Bundesministeriums für Bildung und Forschung (BMBF) konnte sich der Nachwuchswissenschaftler mit seinem Projekt „NIKO – Nanostrukturierte Ionenleiter-Komposite als Schlüsselkomponenten für effiziente Energiespeicher- und -wandlertechnologien“ durchsetzen.


Schematische Darstellung des Funktionsprinzips einer Batterieelektrode (links) und einer Sauerstoffmembran (rechts) auf Basis der nanostrukturierten Komposit-Materialien.

Grafik: Dr. Matthias Elm

Dr. Matthias Elm erforscht die Eigenschaften nanostrukturierter Komposit-Materialien für Anwendungen im Bereich der Sauerstoffmembranen und Lithiumionen-Batterien. Das BMBF fördert sein Projekt für die nächsten fünf Jahre mit rund 1,4 Millionen Euro.

„Die Materialforschung hat als Querschnittstechnologie eine große Bedeutung“, so JLU-Präsident Prof. Dr. Joybrato Mukherjee. „Ich freue mich sehr darüber, dass die JLU mit der Nachwuchsgruppe von Dr. Elm weitere Impulse in diesem innovativen Forschungsgebiet setzen kann und gratuliere ihm herzlich zu diesem Erfolg.“

Sauerstoffmembranen und Lithiumionen-Batterien spielen in modernen Energiespeicher- und -wandlertechnologien eine entscheidende Rolle. Die Membranen dienen sowohl als Filter zur Herstellung von reinem oder auch chemisch aktiviertem Sauerstoff, der als Oxidationsmittel benötigt wird. Lithiumionen-Batterien werden in immer stärkerem Maße als Energiespeicher eingesetzt.

Die Speichereigenschaften der Batterien zu verbessern und die Betriebstemperatur von Sauerstoffmembranen zu senken, sind hierbei wichtige Aufgaben. In beiden Anwendungen spielen sogenannte ionisch/elektronisch gemischte Leiter eine zentrale Rolle. Diese Materialien benötigen gleichzeitig eine sehr hohe ionische und auch elektronische Leitfähigkeit, was in einphasigen, homogenen Stoffen nur selten erreicht wird.

Die Entwicklung von mehrphasigen Komposit-Materialien, in denen gute Ionenleiter mit guten Elektronenleitern kombiniert werden, könnte eine deutliche Leistungssteigerung in beiden Anwendungsbereichen ermöglichen. Insbesondere die Eigenschaften der entstehenden Grenzflächen könnten hierbei der Schlüssel zum Erfolg sein.

Die Nachwuchsgruppe von Dr. Matthias Elm wird im Rahmen des Projektes neue Methoden zur Herstellung von Komposit-Materialien mit besonderen Transporteigenschaften entwickeln. Dazu werden die physikalischen Methoden der Mikro- und Nanostrukturierung auf ionenleitende Systeme übertragen.

Insbesondere sollen die inneren Grenzflächen derart modifiziert werden, dass eine signifikant erhöhte Lithium-Speicherfähigkeit bzw. ein schnellerer Transport für Sauerstoff erreicht wird. In Zusammenarbeit mit Industriepartnern sollen mit Hilfe der Komposite Feststoffbatterien mit optimierten Kathodeneigenschaften sowie funktionstüchtige Sauerstoffmembrane mit reduzierter Betriebstemperatur realisiert werden.

Dr. Matthias Elm (Jahrgang 1980) studierte Physik an der Philipps-Universität in Marburg. 2010 promovierte er an der JLU in der Arbeitsgruppe von Prof. Dr. Peter J. Klar am I. Physikalischen Institut auf dem Gebiet granularer Hybridstrukturen. Anschließend forschte er ein Jahr in Japan am „Research Center for Integrated Quantum Electronics“ an der Hokkaido University in Sapporo, wo er sich mit dem Wachstum und der Charakterisierung ferromagnetischer Nanocluster für spintronische Anwendungen beschäftigte.

Nach seiner Rückkehr nach Gießen weitete er 2013 seine Forschungsaktivitäten auf den Bereich der Festkörperchemie am Physikalisch-Chemischen Institut in der Arbeitsgruppe von Prof. Dr. Jürgen Janek aus, wobei der Schwerpunkt auf Untersuchungen der Transporteigenschaften von nanostrukturierten ionischen und gemischtleitenden Oxiden liegt. Im Zentrum für Materialforschung (LaMa) der JLU leitet er seit Februar 2017 die neue „NanoMatFutur“-Nachwuchsgruppe „Nanoionik und Nanoelektronik“.

Kontakt

Dr. Matthias Elm
Zentrum für Materialforschung
Heinrich-Buff-Ring 16, 35392 Gießen
Telefon: 0641 99-33147/-34522
E-Mail: matthias.elm@exp1.physik.uni-giessen.de

Weitere Informationen:

http://www.uni-giessen.de/ag_elm

Lisa Dittrich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie