Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eduard Arzt awarded the highest European research prize

17.10.2013
The materials scientist Professor Eduard Arzt, Scientific Director and Chairman of the INM – Leibniz Institute for New Materials, has been awarded an advanced grant of around 2.5 million euros by the European Research Council (ERC).

Over the next five years, he will use this to develop three-dimensional structures and surfaces whose functions can be turned on and off by external stimuli. The ERC’s advanced grants honor European researchers who have already made outstanding achievements in pioneering research.

Professor Arzt is pursuing various long-term goals in his research. On the one hand, for example, highly sensitive wafers or lens systems could eventually be picked and transported in production processes by switchable adhesion without leaving residues and without causing damage, without using grippers or suckers.

Medical implants, where adhesion only commences when required, can make the work of surgeons easier. On the other hand, new surface microstructures can also offer the possibility of selectively changing the feeling of touch. So in future, for example, automobile steering wheels could send out a hazard warning through a sudden change in the surface; on smooth touchscreens, a keyboard will be felt by the touch of a button and as a result use the sense of touch in the communication between man and computer.

Whilst static adhesion systems for level hard surfaces have been subject to in-depth investigation for some time, virtually no research has been conducted on the realization of switchable adhesion or adhesion to soft surfaces. “Controlled adhesion and detachment – this is a principle that is found in nature. Geckos use it to move on smooth, rough, flexible and rigid substrates, on walls and even upside down.

Their adhesive ability is based on very fine hairs, known as fibrils, on their feet”, explains the Scientific Director and Chairman at the INM. “With the ERC project, we are conducting research into a new generation of synthetic gecko structures. By changing the temperature, by electric fields or other external influences, it should be possible to switch adhesion on and off as required.

A second focus is on understanding how gecko structures can adhere to flexible surfaces, for example human skin. This principle will be further developed for touch structures and biomedical applications. Ultimately our aim is to demonstrate the feasibility of bioinspired surfaces on a larger scale in order to work out the basis for cost-effective production”, explains the materials scientist.

Background

Personal details
Professor Eduard Arzt studied physics and mathematics at the University of Vienna, graduating in 1980. From 1980 to 1990, he worked in research at Cambridge University (UK), Stanford University (USA) and at the Max Planck Institute for Metals Research (Stuttgart). From 1990 to 2007, he was Director at the Max Planck Institute for Metals Research. Since 2007, he has been Scientific Director and Chairman at the INM – Leibniz Institute for New Materials and Professor for New Materials at Saarland University.
The ERC and pioneering research
The ERC promotes basic research referred to as pioneering research or “frontier research”. These terms describe ground-breaking and visionary research removing the boundaries between basic and applied research, between classic disciplines and between research and technology.
With its program, the ERC’s aim in the long-term is to become the leader in technological and scientific advances in Europe and the world. A mixture of basic and applied research will increase the competitiveness and attractiveness of the European Research Area. Research is centered on both immediate and also future scientific and social subjects.
Achieving these goals requires excellent and creative researchers from the natural sciences, engineering, arts, social and life sciences who can also develop new ideas beyond the boundaries of their field. With the help of these exceptional scientists, the ERC is driving forward the institutionalization of cutting-edge European research at individual level and the establishment of an extensive European knowledge pool.

(Source: http://www.eubuero.de/erc-pionierforschung.htm)

Contact:
Prof. Dr. Eduard Arzt
INM – Leibniz Institute for New Materials
Scientific Director
Phone: +49681-9300-500
eduard.arzt@inm-gmbh.de
INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for implant surfaces, new surfaces for tribological applications and nanosafety/nanobio interaction. Research at INM is performed in three fields: Chemical Nanotechnology, Interface Materials, and Materials in Biology.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 190 employees.

Dr. Carola Jung | idw
Weitere Informationen:
http://www.inm-gmbh.de/en
http://www.leibniz-gemeinschaft.de/en/home

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie