Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Edelgas in Molekülkäfig detektiert Immunprozesse

04.11.2009
PTB-Forscher sind Gewinner des Innovationswettbewerbs Medizintechnik des BMBF

Mit Magnetresonanztomographie (MRT) Funktionsstörungen von Herz und Hirn ohne Eingriff in den Körper aufzuspüren, ist bereits ein etabliertes Diagnoseverfahren. Nun wollen Wissenschaftler der Physikalisch-Technischen Bundesanstalt Berlin (PTB) gemeinsam mit Kollegen der Freien Universität Berlin (FUB) die MRT so "scharfsichtig" machen, dass sogar das Bindungsverhalten einzelner immunologisch wichtiger Moleküle im Körper sichtbar gemacht werden kann.

Dies soll durch einen Biosensor gelingen, der unter anderem das Edelgas Xenon enthält, dessen MRT-Signal um mehrere Größenordnungen erhöht werden kann. Da Edelgase für gewöhnlich keine Bindungen eingehen, greifen die Forscher zu einem Trick: Sie sperren das Xenonatom in einen Molekülkäfig und binden diesen an das Oberflächenmolekül einer Immunzelle.

Durch das hochempfindliche Xenon kann dann die Abwehrzelle mittels MRT beobachtet werden. Das Verfahren soll in der Diagnostik von Autoimmunerkrankungen wie Rheumatoider Arthritis oder Multipler Sklerose eingesetzt werden. In der vergangenen Woche ist das Forschungsvorhaben von Lorenz Mitschang (PTB), Wolfgang Kilian (PTB) und Christian Freund (FUB) vom Bundesministerium für Bildung und Forschung im Rahmen des Innovationswettbewerbs Medizintechnik prämiert worden.

Von den Forschern wurde in einer Kooperation mit Wissenschaftlern des Max-Delbrück-Centrums für Molekulare Medizin bereits ein solcher Biosensor entwickelt, er ist ein Konstrukt aus vier Bestandteilen: dem Edelgas Xenon (129Xe), dem umgebenden Molekülkäfig, einem Virusfragment und einem so genannten Linker, der für die Bindung zwischen Käfig und Virusfragment zuständig ist. Der Biosensor bindet ganz spezifisch an ein bestimmtes Molekül: das Protein MHC II, das im Immunsystem dafür zuständig ist, Krankheitserreger zu präsentieren und eine Immunreaktion induzieren kann.

Durch den Einsatz von hyperpolarisiertem 129Xe wurde eine hinreichend hohe Meßempfindlichkeit erreicht, um ein Nanomol MHC II-gebundener Biosensoren nachzuweisen. Dies ist die Voraussetzung dafür, immunologisch aktiven Molekülen auf der Spur zu bleiben, die nur in geringen Konzentrationen auftreten. Im Normalfall ist das Antigen ein körperfremder Eindringling. Bei Autoimmunerkrankungen ist es jedoch ein körpereigener Stoff, gegen den das Abwehrsystem dann mobilisiert wird. Antworten auf die Frage, wieso das Immunsystem sich so verhält und welche Faktoren verantwortlich sind, ist Ziel medizinischer Forschung.

Ansprechpartner in der PTB
Lorenz Mitschang, Tel.: (030), 3481-7632, E-Mail: lorenz.mitschang@ptb.de

Imke Frischmuth | idw
Weitere Informationen:
http://www.ptb.de/
http://ib.ptb.de/de/org/8/Nachrichten8/2009/grundlagen/biosensoren.html

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG fördert für weitere drei Jahre Forschungen zu Kieselalgen
22.03.2017 | Technische Universität Dresden

nachricht Effiziente Tools für bildgebende Studien
21.03.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie