Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dresdner Forscher erhält „Starting Grant“ des Europäischen Forschungsrates

04.07.2012
Dr. Markus Schubert vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) wurde vom Europäischen Forschungsrat für einen „ERC Starting Grant“ ausgewählt.
Er hat erfolgreich an einer Ausschreibung für die europäische Nachwuchsforscherelite teilgenommen. Mit der beantragten Fördersumme von fast 1,2 Mio. Euro will der Wissenschaftler die komplexen Strömungen in Chemiereaktoren erstmals sichtbar machen und deren Einfluss auf das Betriebsverhalten untersuchen. Die Strömungen beeinflussen stark die Energieeffizienz von Chemieanlagen.

Für einen „ERC Starting Grant“ des Europäischen Forschungsrates (European Research Council ERC) können sich herausragende europäische Nachwuchsforscher bewerben. Neben einem exzellenten Forschungsantrag müssen die Wissenschaftler eine bisher beeindruckende und weiterhin vielversprechende wissenschaftliche Laufbahn nachweisen. Dr. Markus Schubert vom Institut für Fluiddynamik ist dies gelungen. Er ist der erste Forscher am HZDR, der mit einem „ERC Starting Grant“ ausgezeichnet wird.

Markus Schubert studierte Verfahrenstechnik und promovierte in diesem Wissenschaftsgebiet an der TU Dresden. Seit 2007 arbeitet er am HZDR, unterbrochen von einem einjährigen Forschungsaufenthalt in Québec/Kanada. Mit der durch den Europäischen Forschungsrat in Aussicht gestellten Förderung will er eine eigene Forschergruppe aufbauen, die sich mit chemischen Mehrphasenreaktoren und den darin ablaufenden komplexen Strömungsprozessen beschäftigt.
Viele Alltagsgüter durchlaufen Chemiereaktoren

„Eine Vielzahl von Produkten und Gütern, die wir täglich verwenden, wie beispielsweise schwefelarme Kraftstoffe oder Kunststoffe, durchlaufen in ihrem Herstellungsprozess derartige Chemiereaktoren. Doch was läuft eigentlich bei den Prozessen ab, die durch meist druckfeste Behälterwände bisher kaum zugänglich sind? Ist die Strömung so eingestellt, dass der Prozess optimal läuft? Hier gibt es erheblichen Forschungsbedarf und genau da wollen wir ansetzen. Mit neuen Untersuchungsmethoden wollen wir die Strömungsdynamik in solchen Reaktoren aufklären und damit Simulationsmodelle weiterentwickeln“, sagt Schubert. „Letztendlich geht es darum, Beiträge zu liefern, wie man solche Prozesse und Anlagen bestmöglich auslegen und damit den Umsatz der gewünschten Produkte verbessern kann, um Ressourcen und Energie zu sparen“, so der Wissenschaftler weiter. Die chemische Industrie ist der drittgrößte Industriezweig des verarbeitenden Gewerbes in Deutschland.

Markus Schubert will die Strömungen unter industrienahen Bedingungen vorerst in einem ganz bestimmten Typ von Chemieapparaten, einem Blasensäulenreaktor, grundlegend untersuchen. In diesen Anlagen wird Gas in einer Flüssigkeit möglichst gleichmäßig verteilt und zur Reaktion gebracht. Der Nachwuchsforscher wird für seine Experimente die Forschungsinfrastruktur am Institut für Fluiddynamik nutzen und die Strömungen mit Röntgenstrahlung sichtbar machen.
Weitere Informationen
Dr. Markus Schubert
Institut für Fluiddynamik
Tel. 0351 260-2627 | m.schubert@hzdr.de

Pressekontakt
Anja Weigl
Tel. 0351 260-2452
a.weigl@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstr. 400 | 01328 Dresden
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Materie, Gesundheit und Energie. Folgende Fragestellungen stehen hierbei im Fokus:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie nutzt man Ressourcen und Energie effizient und sicher?
Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 900 Mitarbeiter – davon ca. 400 Wissenschaftler inklusive 140 Doktoranden.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.hzdr.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten