Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG bewilligt Verlängerung für Sonderforschungsbereich 716 - Die Teilchen tanzen weiter

17.11.2010
Erfolg für die Uni Stuttgart: Die Deutsche Forschungsgemeinschaft (DFG) hat am 16. November grünes Licht für die Weiterförderung des Sonderforschungsbereichs (SFB) 716 „Dynamische Simulation von Systemen mit großen Teilchenzahlen“ in einer zweiten Phase von 2011 bis 2014 gegeben. Der Förderumfang beträgt rund zwei Millionen Euro jährlich.

„Mit ihrer Entscheidung honoriert die DFG einerseits die Exzellenz der Stuttgarter Naturwissenschaften, zum anderen aber insbesondere auch die international herausragende Stellung der Universität Stuttgart auf dem Gebiet der Simulationstechnologien und Visualisierung sowie deren hervorragende Ausstattung und Know-how im Bereich des Höchstleistungsrechnens“, so Uni-Rektor Prof. Wolfram Ressel.

Ziel des im Jahr 2007 angelaufenen Sonderforschungsbereiches 716 (Sprecher Prof. Hans-Rainer Trebin) ist es, im Computer Teilchensysteme zu simulieren. Da alle Materie aus Teilchen (Partikeln) beziehungsweise auf der untersten Stufe aus Atomen aufgebaut ist, kommen solche Systeme in unserer Welt in vielfacher Weise vor. Dementsprechend arbeiten im Rahmen des Sonderforschungsbereichs Wissenschaftler aus insgesamt fünf Fakultäten, darunter der Mathematik und Physik, der Informatik und der Energie-, Verfahrens- und Biotechnik zusammen. Als fakultätsübergreifende Einrichtungen sind das Höchstleistungsrechenzentrum sowie das Visualisierungszentrum der Universität beteiligt.

Ein Bereich des SFB befasst sich mit Prozessen in Festkörpern auf atomistischer Skala. Die Wissenschaftler simulieren zum Beispiel, wie ein Laserstrahl auf einen Aluminiumblock trifft, die Oberfläche aufschmilzt und durch Auswurf des Materials ein Loch bohrt. Indem man im Rechner die Intensität des Strahles, seine Form und Dauer variiert, kann man den Prozess optimieren, ohne ein reales Experiment durchführen zu müssen. Ebenso kann man mit atomistischen Simulationen studieren, wie sich metallische Leiterbahnen in einem Schaltkreis von ihrem isolierenden Untergrund lösen und damit zum Beispiel ein Handy unbrauchbar machen. Darüber hinaus wollen Forscher herausfinden, wie man optimal Nanodiamanten erzeugen und darin Stickstoffatome implantieren kann. Deren Leuchten macht einerseits die Nanodiamanten zu idealen Biomarkern. Andererseits erhofft man sich, die elektronischen Zustände der Implantate als Prozessoren für Quantencomputer nutzen zu können.

Bei den Partikel-Simulationen auf atomarer Skala, auch Molekulardynamik genannt, wird der Weg eines jeden einzelnen Teilchens berechnet, den es unter den Einflüssen seiner Nachbarn und äußerer Kräfte durchläuft. Dazu ist es erforderlich, die Kraftgesetze, mit denen sich die Teilchen beeinflussen, so genau wie möglich zu erforschen. Mit der Molekulardynamik lassen sich aber insbesondere auch biologische Systeme erforschen. Im SFB werden Struktur und Flexibilität von Proteinen in Lösungsmitteln simuliert und der Transport von Proteinen durch Zellmembranen. Ohne experimentellen Aufwand kann man die Folgen von Mutationen beobachten. Es ist geplant, biologische Reaktionsmechanismen zu untersuchen, wie etwa die Anbindung von Liganden an Enzyme. Derartige Prozesse führen zu Komplexen, welche Abstoßungsreaktionen bei Organplantationen verhindern oder durch Signalkaskaden die Krebsbildung stören. Weitere Bereiche des SFB betrachten exotische Kristallstrukturen von Nanoteilchen oder größere Partikel, wie etwa Kohlenstoffteilchen, die sich in turbulenten Flammenströmungen zu Rußflecken zusammenbacken. Stärker anwendungsorientiert sind Studien des Abriebs in Maschinenteilen, die von Flüssigkeiten oder Gasen durchströmt werden, wie Pumpen oder Strahltriebwerke.

Bei den atomistischen Simulationen stellt sich das große Problem, dass die Atome unvorstellbar klein und ihre Bewegungen extrem schnell sind. Für die Berechnung braucht man deshalb Höchstleistungsrechner in Form von Computer-Clustern mit Tausenden von Prozessoren. Die Teilchenzahl und die Simulationszeiten zu steigern, ist das vorrangige Ziel des Sonderforschungsbereiches. Dazu bedarf es nicht nur neuer Hardware-Architekturen, sondern auch neuer Algorithmen, Programmierparadigmen und Speicherstrategien. Bei den Rechnungen fallen riesige Datenmengen an, für deren Interpretation die Visualisierung unverzichtbar ist. Die Extraktion von Merkmalen extrem vieler Teilchen und ihre graphische Darstellung in Echtzeit ist eine große Herausforderung für die am SFB beteiligten Informatiker.

Weitere Informationen: Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte Physik, Tel. 0711/685-65255, e-mail: trebin@itap.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Virenforschung
13.01.2017 | Julius-Maximilians-Universität Würzburg

nachricht International ausgezeichnet! Rittal gewinnt „Cooling Oscar“
20.10.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie