Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

DFG bewilligt Verlängerung für Sonderforschungsbereich 716 - Die Teilchen tanzen weiter

17.11.2010
Erfolg für die Uni Stuttgart: Die Deutsche Forschungsgemeinschaft (DFG) hat am 16. November grünes Licht für die Weiterförderung des Sonderforschungsbereichs (SFB) 716 „Dynamische Simulation von Systemen mit großen Teilchenzahlen“ in einer zweiten Phase von 2011 bis 2014 gegeben. Der Förderumfang beträgt rund zwei Millionen Euro jährlich.

„Mit ihrer Entscheidung honoriert die DFG einerseits die Exzellenz der Stuttgarter Naturwissenschaften, zum anderen aber insbesondere auch die international herausragende Stellung der Universität Stuttgart auf dem Gebiet der Simulationstechnologien und Visualisierung sowie deren hervorragende Ausstattung und Know-how im Bereich des Höchstleistungsrechnens“, so Uni-Rektor Prof. Wolfram Ressel.

Ziel des im Jahr 2007 angelaufenen Sonderforschungsbereiches 716 (Sprecher Prof. Hans-Rainer Trebin) ist es, im Computer Teilchensysteme zu simulieren. Da alle Materie aus Teilchen (Partikeln) beziehungsweise auf der untersten Stufe aus Atomen aufgebaut ist, kommen solche Systeme in unserer Welt in vielfacher Weise vor. Dementsprechend arbeiten im Rahmen des Sonderforschungsbereichs Wissenschaftler aus insgesamt fünf Fakultäten, darunter der Mathematik und Physik, der Informatik und der Energie-, Verfahrens- und Biotechnik zusammen. Als fakultätsübergreifende Einrichtungen sind das Höchstleistungsrechenzentrum sowie das Visualisierungszentrum der Universität beteiligt.

Ein Bereich des SFB befasst sich mit Prozessen in Festkörpern auf atomistischer Skala. Die Wissenschaftler simulieren zum Beispiel, wie ein Laserstrahl auf einen Aluminiumblock trifft, die Oberfläche aufschmilzt und durch Auswurf des Materials ein Loch bohrt. Indem man im Rechner die Intensität des Strahles, seine Form und Dauer variiert, kann man den Prozess optimieren, ohne ein reales Experiment durchführen zu müssen. Ebenso kann man mit atomistischen Simulationen studieren, wie sich metallische Leiterbahnen in einem Schaltkreis von ihrem isolierenden Untergrund lösen und damit zum Beispiel ein Handy unbrauchbar machen. Darüber hinaus wollen Forscher herausfinden, wie man optimal Nanodiamanten erzeugen und darin Stickstoffatome implantieren kann. Deren Leuchten macht einerseits die Nanodiamanten zu idealen Biomarkern. Andererseits erhofft man sich, die elektronischen Zustände der Implantate als Prozessoren für Quantencomputer nutzen zu können.

Bei den Partikel-Simulationen auf atomarer Skala, auch Molekulardynamik genannt, wird der Weg eines jeden einzelnen Teilchens berechnet, den es unter den Einflüssen seiner Nachbarn und äußerer Kräfte durchläuft. Dazu ist es erforderlich, die Kraftgesetze, mit denen sich die Teilchen beeinflussen, so genau wie möglich zu erforschen. Mit der Molekulardynamik lassen sich aber insbesondere auch biologische Systeme erforschen. Im SFB werden Struktur und Flexibilität von Proteinen in Lösungsmitteln simuliert und der Transport von Proteinen durch Zellmembranen. Ohne experimentellen Aufwand kann man die Folgen von Mutationen beobachten. Es ist geplant, biologische Reaktionsmechanismen zu untersuchen, wie etwa die Anbindung von Liganden an Enzyme. Derartige Prozesse führen zu Komplexen, welche Abstoßungsreaktionen bei Organplantationen verhindern oder durch Signalkaskaden die Krebsbildung stören. Weitere Bereiche des SFB betrachten exotische Kristallstrukturen von Nanoteilchen oder größere Partikel, wie etwa Kohlenstoffteilchen, die sich in turbulenten Flammenströmungen zu Rußflecken zusammenbacken. Stärker anwendungsorientiert sind Studien des Abriebs in Maschinenteilen, die von Flüssigkeiten oder Gasen durchströmt werden, wie Pumpen oder Strahltriebwerke.

Bei den atomistischen Simulationen stellt sich das große Problem, dass die Atome unvorstellbar klein und ihre Bewegungen extrem schnell sind. Für die Berechnung braucht man deshalb Höchstleistungsrechner in Form von Computer-Clustern mit Tausenden von Prozessoren. Die Teilchenzahl und die Simulationszeiten zu steigern, ist das vorrangige Ziel des Sonderforschungsbereiches. Dazu bedarf es nicht nur neuer Hardware-Architekturen, sondern auch neuer Algorithmen, Programmierparadigmen und Speicherstrategien. Bei den Rechnungen fallen riesige Datenmengen an, für deren Interpretation die Visualisierung unverzichtbar ist. Die Extraktion von Merkmalen extrem vieler Teilchen und ihre graphische Darstellung in Echtzeit ist eine große Herausforderung für die am SFB beteiligten Informatiker.

Weitere Informationen: Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte Physik, Tel. 0711/685-65255, e-mail: trebin@itap.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.sfb716.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik