Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutscher Zukunftspreis 2013 - Kontrolliert verdampft

05.12.2013
Mit ultrakurzen Laserpulsen lassen sich unterschiedlichste Werkstoffe schnell und präzise bearbeiten, ohne sie aufzuheizen.

Mitarbeiter von Bosch, Trumpf, der Universität Jena und des Fraunhofer IOF haben Ultrakurzpulslaser zu einem erfolgreichen Werkzeug der Serienproduktion gemacht. Dafür haben sie am 4. Dezember 2013 den Deutschen Zukunftspreis erhalten.

Laser sind aus der industriellen Fertigung nicht mehr wegzudenken. Doch in bestimmten Bereichen stoßen konventionelle Systeme an Grenzen. Trifft ein Laserstrahl zum Beispiel auf Metall, erwärmt er es.

Der Werkstoff schmilzt teilweise. Doch das Verhalten von geschmolzenem Material lässt sich nur schwer beherrschen. Es bilden sich Unebenheiten. Das Werkstück muss aufwändig nachbearbeitet werden. Das kostet Zeit und Geld. Ein weiterer Nachteil: Materialien wie Diamant und Saphir lassen sich so gar nicht bearbeiten.

Anders mit dem Ultrakurzpluslaser: »Durch die geschickte Wahl von Pulsdauer, Pulsenergie und Fokussierung wird das Material so schnell und stark erhitzt, dass es direkt verdampft«, beschreibt Stefan Nolte den besonderen Vorteil des Verfahrens. Nolte arbeitet als Professor für Experimental- und Laserphysik an der Friedrich-Schiller-Universität sowie am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena. Er hat wichtige wissenschaftliche Grundlagen für die neue Technik gelegt. Mit einem Ultrakurzpulslaser lassen sich nach und nach feinste Bereiche in der Größe von nur wenigen millionstel Millimetern (Nanometern) abtragen. Das verdampfte Material wird einfach abgesaugt. Ein vom Computer gesteuertes Spiegelsystem lenkt die Laserpulse blitzschnell an die richtige Stelle. »Hunderttausende Pulse pro Sekunde ermöglichen eine schmelzfreie Bearbeitung in höchster Präzision«, erläutert Dr. Jens König von dem Technologieunternehmen Bosch. Ingenieure bezeichnen das auch als »kalte Bearbeitung«. So kann man sogar feinste Strukturen auf einem Streichholzkopf gravieren, ohne dass er entflammt.

»Mit dem Ultrakurzpulslaser ist die Produktion in beinahe unvorstellbar winzige Zeitdimensionen vorgestoßen. Ultrakurz bedeutet hier: Pulse mit Pikosekunden-Dauer, das sind 10-¹² Sekunden«, erläutert Dr. Dirk Sutter vom Laserhersteller Trumpf. Zum Vergleich: Während ein Lichtstrahl für die Strecke von der Erde bis zum Mond gut eine Sekunde benötigt, gelangt er in einer Pikosekunde gerade einmal 0,3 Millimeter weit.

Experten nutzen schon seit einigen Jahren ultrakurze Laserpulse, um auch hochemp-findliche Materialien präzise und schonend zu bearbeiten. Doch das erfahren kam lange Zeit meist nur in Forschungslaboren zum Einsatz. Denn es war nicht genau bekannt, wie gepulste Laserstrahlen beschaffen sein müssen, um die hohen Anforde-rungen der industriellen Fertigung zu erfüllen. Wie sollten beispielsweise Pulslänge, -zahl und -energie ausgelegt sein, um einen wirklich präzisen und vor allem produkti-ven Materialabtrag zu erreichen, und das zuverlässig über hunderte Milliarden Pulse hinweg? In beharrlicher Arbeit haben Jens König, Dirk Sutter und Stefan Nolte die Ultrakurzpulslaser zu einem robusten und zuverlässigen Werkzeug für den Einsatz in Werkhallen gemacht.

Die Experten bei Bosch erforschten und beschrieben die Anforde-rungen und Spezifikationen an das Laserlicht. rumpf fertigte immer leistungsstärkere Ultrakurzpulslaser. Zugleich entwickelte sich auch die Ultrakurzpuls-Technologie bis zum heutigen hohen Stand weiter. Den Experten gelang es sogar, einen Ultrakurzpulslaser in Maschinen so präzise zu führen, dass damit eine verlässliche industrielle Serienproduk-tion mit allen Vorteilen möglich wurde.

Für ihre herausragende Arbeit hat Bundespräsident Joachim Gauck am 4. Dezember Jens König, Dirk Sutter und Stefan Nolte den Deutschen Zukunftspreis verliehen. Der Preis für Technik und Innovation ehrt wissenschaftliche Höchstleistungen mit einem großen wirtschaftlichen Potenzial. Die viel beachtete Auszeichnung wird seit 1997 jährlich vergeben und ist mit 250 000 Euro dotiert.

Von Diamanten über harte Gläser, Stahl und Halbleiter bis hin zu Keramiken und empfindlichsten Kunststofen – mit der neuen innovativen Technik lassen sich fast alle Materialien berührungslos bearbeiten. Der universell einsetzbare Laser bohrt, schneidet, strukturiert oder fräst fast beliebige Formen. Mit dem präzisen Verfahren kann man sogar neue Produkte fertigen, die bislang nur äußerst schwierig oder gar nicht herzu-stellen waren. Schon jetzt werden damit unter anderem extrem feine Düsen für Benzin-Direkteinspritzventile und besser verträgliche Stents gefertigt oder gehärtetes Glas für Displays in Smartphones geschnitten.

Grundlagenforschung, Entwicklung und auch Produktion – das alles fand und findet inDeutschland statt. Mehr als 40 Patente haben die Beteiligten veröffentlicht. Zudem sind zahlreiche neue Arbeitsplätze entstanden. Bis 2013 lieferte allein Bosch etwa 30 Millionen mit der neuen Technik hergestellte Bauteile an Kunden aus. Trumpf verkauft täglich einen Ultrakurzpulslaser.

Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/dezember/deutscher-zukunftspreis-2013.html

Presseinformation und Ansprechpartner

http://www.deutscher-zukunftspreis.de/de
Informationen zum Deutschen Zukunftspreis

Marion Horn | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops