Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Deutscher Zukunftspreis 2013 - Kontrolliert verdampft

05.12.2013
Mit ultrakurzen Laserpulsen lassen sich unterschiedlichste Werkstoffe schnell und präzise bearbeiten, ohne sie aufzuheizen.

Mitarbeiter von Bosch, Trumpf, der Universität Jena und des Fraunhofer IOF haben Ultrakurzpulslaser zu einem erfolgreichen Werkzeug der Serienproduktion gemacht. Dafür haben sie am 4. Dezember 2013 den Deutschen Zukunftspreis erhalten.

Laser sind aus der industriellen Fertigung nicht mehr wegzudenken. Doch in bestimmten Bereichen stoßen konventionelle Systeme an Grenzen. Trifft ein Laserstrahl zum Beispiel auf Metall, erwärmt er es.

Der Werkstoff schmilzt teilweise. Doch das Verhalten von geschmolzenem Material lässt sich nur schwer beherrschen. Es bilden sich Unebenheiten. Das Werkstück muss aufwändig nachbearbeitet werden. Das kostet Zeit und Geld. Ein weiterer Nachteil: Materialien wie Diamant und Saphir lassen sich so gar nicht bearbeiten.

Anders mit dem Ultrakurzpluslaser: »Durch die geschickte Wahl von Pulsdauer, Pulsenergie und Fokussierung wird das Material so schnell und stark erhitzt, dass es direkt verdampft«, beschreibt Stefan Nolte den besonderen Vorteil des Verfahrens. Nolte arbeitet als Professor für Experimental- und Laserphysik an der Friedrich-Schiller-Universität sowie am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena. Er hat wichtige wissenschaftliche Grundlagen für die neue Technik gelegt. Mit einem Ultrakurzpulslaser lassen sich nach und nach feinste Bereiche in der Größe von nur wenigen millionstel Millimetern (Nanometern) abtragen. Das verdampfte Material wird einfach abgesaugt. Ein vom Computer gesteuertes Spiegelsystem lenkt die Laserpulse blitzschnell an die richtige Stelle. »Hunderttausende Pulse pro Sekunde ermöglichen eine schmelzfreie Bearbeitung in höchster Präzision«, erläutert Dr. Jens König von dem Technologieunternehmen Bosch. Ingenieure bezeichnen das auch als »kalte Bearbeitung«. So kann man sogar feinste Strukturen auf einem Streichholzkopf gravieren, ohne dass er entflammt.

»Mit dem Ultrakurzpulslaser ist die Produktion in beinahe unvorstellbar winzige Zeitdimensionen vorgestoßen. Ultrakurz bedeutet hier: Pulse mit Pikosekunden-Dauer, das sind 10-¹² Sekunden«, erläutert Dr. Dirk Sutter vom Laserhersteller Trumpf. Zum Vergleich: Während ein Lichtstrahl für die Strecke von der Erde bis zum Mond gut eine Sekunde benötigt, gelangt er in einer Pikosekunde gerade einmal 0,3 Millimeter weit.

Experten nutzen schon seit einigen Jahren ultrakurze Laserpulse, um auch hochemp-findliche Materialien präzise und schonend zu bearbeiten. Doch das erfahren kam lange Zeit meist nur in Forschungslaboren zum Einsatz. Denn es war nicht genau bekannt, wie gepulste Laserstrahlen beschaffen sein müssen, um die hohen Anforde-rungen der industriellen Fertigung zu erfüllen. Wie sollten beispielsweise Pulslänge, -zahl und -energie ausgelegt sein, um einen wirklich präzisen und vor allem produkti-ven Materialabtrag zu erreichen, und das zuverlässig über hunderte Milliarden Pulse hinweg? In beharrlicher Arbeit haben Jens König, Dirk Sutter und Stefan Nolte die Ultrakurzpulslaser zu einem robusten und zuverlässigen Werkzeug für den Einsatz in Werkhallen gemacht.

Die Experten bei Bosch erforschten und beschrieben die Anforde-rungen und Spezifikationen an das Laserlicht. rumpf fertigte immer leistungsstärkere Ultrakurzpulslaser. Zugleich entwickelte sich auch die Ultrakurzpuls-Technologie bis zum heutigen hohen Stand weiter. Den Experten gelang es sogar, einen Ultrakurzpulslaser in Maschinen so präzise zu führen, dass damit eine verlässliche industrielle Serienproduk-tion mit allen Vorteilen möglich wurde.

Für ihre herausragende Arbeit hat Bundespräsident Joachim Gauck am 4. Dezember Jens König, Dirk Sutter und Stefan Nolte den Deutschen Zukunftspreis verliehen. Der Preis für Technik und Innovation ehrt wissenschaftliche Höchstleistungen mit einem großen wirtschaftlichen Potenzial. Die viel beachtete Auszeichnung wird seit 1997 jährlich vergeben und ist mit 250 000 Euro dotiert.

Von Diamanten über harte Gläser, Stahl und Halbleiter bis hin zu Keramiken und empfindlichsten Kunststofen – mit der neuen innovativen Technik lassen sich fast alle Materialien berührungslos bearbeiten. Der universell einsetzbare Laser bohrt, schneidet, strukturiert oder fräst fast beliebige Formen. Mit dem präzisen Verfahren kann man sogar neue Produkte fertigen, die bislang nur äußerst schwierig oder gar nicht herzu-stellen waren. Schon jetzt werden damit unter anderem extrem feine Düsen für Benzin-Direkteinspritzventile und besser verträgliche Stents gefertigt oder gehärtetes Glas für Displays in Smartphones geschnitten.

Grundlagenforschung, Entwicklung und auch Produktion – das alles fand und findet inDeutschland statt. Mehr als 40 Patente haben die Beteiligten veröffentlicht. Zudem sind zahlreiche neue Arbeitsplätze entstanden. Bis 2013 lieferte allein Bosch etwa 30 Millionen mit der neuen Technik hergestellte Bauteile an Kunden aus. Trumpf verkauft täglich einen Ultrakurzpulslaser.

Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/dezember/deutscher-zukunftspreis-2013.html

Presseinformation und Ansprechpartner

http://www.deutscher-zukunftspreis.de/de
Informationen zum Deutschen Zukunftspreis

Marion Horn | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie