Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Detektorsystem für Schnappschüsse biologischer und chemischer Prozesse

23.02.2015

EU fördert SoNDe-Projekt zur Detektorentwicklung für Neutronenforschung mit rund 4 Millionen Euro

Das Forschungszentrum Jülich erhält gemeinsam mit Projektpartnern aus Wissenschaft und Industrie rund vier Millionen Euro aus dem Rahmenprogramm der Europäischen Union für Forschung und Innovation Horizont 2020 zur Entwicklung eines leistungsfähigeren Detektorsystems für die Forschung mit Neutronen.


Dieser etwa ein Quadratmeder große herkömmliche Szintillationsdetektor im Inneren eines Neutronenstreuinstruments besitzt acht Reihen mit jeweils acht Photomultipliern.

Forschungszentrum Jülich


So funktioniert ein Szintillationsdetektor (von links): Ein Neutron (blau) erzeugt in einem Szintillationsmaterial einen Lichtblitz, der wiederum von einem Photom

Forschungszentrum Jülich

Ziel des SoNDe-Projektes ist ein Prototyp einer neuen Generation von Detektoren, die notwendig sind, um moderne Neutronenquellen wissenschaftlich optimal nutzen zu können. Der Detektor soll rund zwanzig Mal mehr Neutronen pro Sekunde bei gleichzeitig verbesserter Ortsauflösung nachweisen können und damit erstmals ermöglichen, Schnappschüsse biologischer und chemischer Prozesse aufzunehmen. Die Technologie bietet zudem eine Reihe weiterer Vorteile und ist auch für Verwendungen außerhalb der Neutronenforschung geeignet.

Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in spezialisierten Großforschungsanlagen erzeugt und mit Hilfe so genannter Streuinstrumente auf die zu untersuchenden Proben gelenkt. An den Atomkernen der Proben "prallen" die Neutronen ab; dabei können sie ihre Richtung und Geschwindigkeit ändern.

Die Art dieser "Streuung" gibt Auskünfte über die Anordnung und Bewegung der Atome in der Probe, die komplementären Methoden wie Röntgen oder Elektronenmikroskopie verborgen bleiben. Detektoren wandeln die gestreuten Neutronen in einem mehrstufigen Prozess in elektronische Signale um. Der hohe Aufwand ist nötig, weil die Kernbausteine für das Auge unsichtbar sind und keine elektrische Ladung tragen.

Die so genannte Zählrate der Detektoren – die Zahl der nachweisbaren Neutronen pro Sekunde – ist derzeit auf den unteren einstelligen Megahertz-Bereich begrenzt. Das limitiert auch die Leistungsfähigkeit der Experimente an modernen und noch mehr an zukünftigen Neutronenquellen mit hohem Neutronenfluss. Denn wenn zu viele Neutronen zu rasch nacheinander auf zu schwache Detektoren treffen, ist keine Messung möglich.

Eine neue Detektortechnologie mit etwa zwanzigfach verbesserter Zählrate und weiteren Vorteilen wollen Forscher und Ingenieure des Forschungszentrums Jülich deshalb in den kommenden vier Jahren gemeinsam mit Partnern an den Neutronenforschungszentren Laboratoire Léon-Brillouin in Frankreich und European Spallation Source (ESS) in Schweden, der schwedischen Universität Lund sowie dem norwegischen Unternehmen Integrated Detector Electronics AS entwickeln. Ende Januar hat die Europäische Kommission zugestimmt, dieses Projekt, das durch das Forschungszentrum Jülich koordiniert wird, mit rund vier Millionen Euro zu fördern.

Die Detektoren enthalten, wie bisher auch, so genanntes Szintillationsmaterial, das einen schwachen Lichtblitz aussendet, wenn ein Neutron darauf trifft. Hierher rührt auch das Projektakronym Solid-state Neutron Detector (Festkörperneutronendetektor). Herz der neuen Technologie sind Multianoden-Photomultiplier, die die bisher genutzten Photomultiplier ersetzen sollen. Photomultiplier verstärken die Lichtsignale und wandeln sie in elektrische um. Herkömmliche Photomultiplier haben einen Durchmesser von etwa zehn Zentimetern, die zukünftigen nur etwa fünf Millimeter. Dadurch lassen sich etwa hundertmal mehr Sensoren pro Fläche unterbringen, wodurch sich Zählrate und Auflösung der Detektoren verbessern.

"Projektziel ist ein Prototyp, der an der im Bau befindlichen European Spallation Source seine Überlegenheit unter Beweis stellen soll", erläutert Dr. Sebastian Jaksch, Projektkoordinator am Jülich Centre for Neutron Science (JCNS). Die ESS soll ab 2019 etwa 30 Mal mehr Neutronen produzieren als heutige Anlagen. Dadurch reichen schon ganz kurze Neutronenblitze, um Daten zu gewinnen. So lassen sich kleinere Probenmengen und schnellere Prozesse untersuchen. Ähnlich wie mit einem Stroboskoplicht lassen sich Schnappschüsse winziger Bewegungen aufnehmen und zu einem Film zusammensetzen, zum Beispiel die Aggregation von organischen Molekülen oder chemische Reaktionen.

Der Detektor wird in modularer Bauweise entwickelt, was zwei große Vorteile hat: Erstens lässt sich die Technologie leicht für verschiedene Experimente anpassen, bei denen je nach Zielsetzung Detektorflächen von wenigen Quadratzentimetern bis zu mehreren Quadratmetern benötigt werden. Außerdem können defekte Flächen innerhalb weniger Tage ausgetauscht werden, wohingegen Reparaturen heutiger Detektoren bis zu mehrere Monate dauern können. Ein weiterer Vorteil der Technologie ist, dass sie ohne den Einsatz von teurem Helium-3 auskommt. Dieses auf der Erde seltene Gas ist nur aufwändig zu gewinnen und wird in steigendem Maße für andere Zwecke benötigt. Da sich Szintillationsdetektoren grundsätzlich für eine weite Bandbreite von Anwendungen eignen, etwa für bildgebende Verfahren in Medizin und Technik, untersucht das Projekt auch solche Einsatzmöglichkeiten.

Ansprechpartner:

Dr. Sebastian Jaksch, Forschungszentrum Jülich, Jülich Centre for Neutron Science,
Tel. 089 28 9-11673, E-Mail: s.jaksch@fz-juelich.de
Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/jcns/DE/Home/home_node.html - Jülich Centre for Neutron Science (JCNS)
http://www.mlz-garching.de/ - Heinz Maier-Leibnitz Zentrum

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Spitzenforschung vom Nanodraht bis zur Supernova: Fünf ERC Consolidator Grants für die TU München
14.12.2017 | Technische Universität München

nachricht Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus
14.12.2017 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik