Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Definierte Polymerstrukturen für Zukunftstechnologien

03.04.2014

Preise für Graduierungsarbeiten zu Polymersomen für Medizin/Biotechnologie und Halbleiterpolymere für die organische Elektronik

Das Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) verleiht auf seinem Jahresempfang am 3. April 2014 erneut Preise für herausragende Graduierungsarbeiten, die von jungen Wissenschaftlern am Institut angefertigt und an der Technischen Universität Dresden eingereicht und verteidigt wurden.

Den Doktorandenpreis des Vereins zur Förderung des IPF erhält Dr. Jens Gaitzsch für seine Dissertation „Synthesis of photocrosslinked and pH sensitive polymersomes and applications in synthetic biology”.

Polymersome sind Polymervesikel nach dem Vorbild der im menschlichen Organismus vorkommenden Liposome, kugelförmigen Hohlraumstrukturen, die von einer Membranhülle aus Fettmolekülen umgeben sind. Dass diese Teilchen in der modernen Medizin und Biotechnologie genutzt werden können, um Fremdkörper bzw. Wirkstoffe in Zellen einzuschleusen, wurde mit synthetisch erzeugten Liposomen aus natürlichen Bausteinen bereits erfolgreich getestet.

Ziel der Arbeit von Jens Gaitzsch war es, die Struktur aus synthetischen Polymeren nachzuahmen, um einen einfacheren, zuverlässigeren und funktionaleren Herstellungsweg zu finden und zudem über die Imitation biologischer Prozesse im Reagenzglas deren Mechanismen besser zu verstehen.

Beides ist ihm im Rahmen seiner Dissertation in hervorragender Weise gelungen, und Jens Gaitzsch hat ein neues Konzept für Polymersome etabliert, das sich sehr gut für die technische Umsetzung eignet. Dies ist umso bemerkenswerter, als die Idee zu dem Promotionsthema vom Preisträger selbst eingebracht wurde, der das Potenzial solcher Strukturen durch den fachlichen Austausch innerhalb der Dresden International Graduate School for Biomedicine and Bioengineering klar erkannt hat.

Synthetisiert wurden im Rahmen der ausgezeichneten Arbeit Polymersome aus einem amphiphilen Blockcopolymer mit Polyethylenglycol (PEG) als hydrophilem Teil (biokompatibel und nichtimmunogen) und einem statistischen Copolymer aus pH-responsivem Diethylamino-ethylmethylacrylat und einem Photovernetzer-Monomer.

Durch den Photovernetzer können die Partikel durch UV-Bestrahlung eine höhere mechanische Stabilität und damit eine bessere Eignung für Herstellung und Einsatz erhalten. Die steuerbare Durchlässigkeit der Membran wird über pH-responsive Polymere und ohne Einsatz von Transmembranproteinen realisiert, was für das Modellsystem Polymersom den Ausschluss zusätzlicher Einflussfaktoren bedeutet und die Untersuchung der Zusammenhänge zwischen Aufbau und Funktion erleichtert.

Die Größe der Membranporen lässt sich über den pH-Wert, die Scherrate und den Vernetzungsgrad gezielt einstellen. So wird die selektive Freisetzung von Nanopartikeln und Molekülen unterschiedlicher Größe möglich. Auch die Aktivität eines Enzyms im Inneren des Polymersoms kann über eine pH-Wert-induzierte Quellung und Entquellung der Membran gesteuert werden.

Herr Dr. Gaitzsch setzt seine wissenschaftliche Tätigkeit derzeit mithilfe eines Stipendiums der Deutschen Forschungsgemeinschaft (DFG) als Postdoc am University College London in der Arbeitsgruppe von Prof. Guiseppe Battaglia fort.

Mit dem Professor-Franz-Brandstetter-Preis wird Tim Erdmann für seine Masterarbeit „Synthese von Dithienosilol-basierten Halbleiter-Polymeren für organische Elektronik“ ausgezeichnet. Tim Erdmann präsentiert im Ergebnis seiner beeindruckend umfangreichen, kreativen und exzellent dokumentierten experimentellen Arbeit einen zuverlässigen Weg zur kontrollierten Synthese von genau definierten und stabilen halbleitenden Polymerstrukturen.

Benötigt werden solche Funktionspolymere, um Bauelemente wie organische Photovoltaikzellen, Feld-Effekt-Transistoren oder lichtemittierende Dioden (OLEDs) zu entwickeln. Organische Elektronik gilt heute als Schlüssel zur Weiterentwicklung der an ihre physikalischen Grenzen gelangenden silizium-basierten Informationstechnologie und zur Bewältigung globaler Herausforderungen.

Die Möglichkeit etwa, kunststoff-basierte elektronische Bauelemente mit effizienten Druckverfahren herzustellen und sie mit hoher Flexibilität in Systeme integrieren zu können, eröffnet ganz neue Einsatzgebiete. Der breite Einsatz von OLEDs zur Beleuchtung oder die Ablösung der in der Herstellung sehr energieaufwändigen anorganischen Solarzellen durch polymere Photovoltaikelemente können den Energiebedarf für diese Anwendung bzw. Produktionskosten in erheblicher Größenordnung senken.

Betreut wurden beide Graduierungsarbeiten von Frau Professor Brigitte Voit, Wissenschaftliche Direktorin und Leiterin des Instituts für Makromolekulare Chemie am IPF sowie Inhaberin der Professur für Organische Chemie der Polymere an der Fakultät Mathematik/Naturwissenschaften der Technischen Universität Dresden.

Fachlicher Direktkontakt:
Prof. Dr. Brigitte Voit
voit@ipfdd.de
Tel.: 0351 4658-590

Kerstin Wustrack | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ipfdd.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Über zwei Millionen für bessere Bordnetze
28.04.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie