Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Definierte Polymerstrukturen für Zukunftstechnologien

03.04.2014

Preise für Graduierungsarbeiten zu Polymersomen für Medizin/Biotechnologie und Halbleiterpolymere für die organische Elektronik

Das Leibniz-Institut für Polymerforschung Dresden e. V. (IPF) verleiht auf seinem Jahresempfang am 3. April 2014 erneut Preise für herausragende Graduierungsarbeiten, die von jungen Wissenschaftlern am Institut angefertigt und an der Technischen Universität Dresden eingereicht und verteidigt wurden.

Den Doktorandenpreis des Vereins zur Förderung des IPF erhält Dr. Jens Gaitzsch für seine Dissertation „Synthesis of photocrosslinked and pH sensitive polymersomes and applications in synthetic biology”.

Polymersome sind Polymervesikel nach dem Vorbild der im menschlichen Organismus vorkommenden Liposome, kugelförmigen Hohlraumstrukturen, die von einer Membranhülle aus Fettmolekülen umgeben sind. Dass diese Teilchen in der modernen Medizin und Biotechnologie genutzt werden können, um Fremdkörper bzw. Wirkstoffe in Zellen einzuschleusen, wurde mit synthetisch erzeugten Liposomen aus natürlichen Bausteinen bereits erfolgreich getestet.

Ziel der Arbeit von Jens Gaitzsch war es, die Struktur aus synthetischen Polymeren nachzuahmen, um einen einfacheren, zuverlässigeren und funktionaleren Herstellungsweg zu finden und zudem über die Imitation biologischer Prozesse im Reagenzglas deren Mechanismen besser zu verstehen.

Beides ist ihm im Rahmen seiner Dissertation in hervorragender Weise gelungen, und Jens Gaitzsch hat ein neues Konzept für Polymersome etabliert, das sich sehr gut für die technische Umsetzung eignet. Dies ist umso bemerkenswerter, als die Idee zu dem Promotionsthema vom Preisträger selbst eingebracht wurde, der das Potenzial solcher Strukturen durch den fachlichen Austausch innerhalb der Dresden International Graduate School for Biomedicine and Bioengineering klar erkannt hat.

Synthetisiert wurden im Rahmen der ausgezeichneten Arbeit Polymersome aus einem amphiphilen Blockcopolymer mit Polyethylenglycol (PEG) als hydrophilem Teil (biokompatibel und nichtimmunogen) und einem statistischen Copolymer aus pH-responsivem Diethylamino-ethylmethylacrylat und einem Photovernetzer-Monomer.

Durch den Photovernetzer können die Partikel durch UV-Bestrahlung eine höhere mechanische Stabilität und damit eine bessere Eignung für Herstellung und Einsatz erhalten. Die steuerbare Durchlässigkeit der Membran wird über pH-responsive Polymere und ohne Einsatz von Transmembranproteinen realisiert, was für das Modellsystem Polymersom den Ausschluss zusätzlicher Einflussfaktoren bedeutet und die Untersuchung der Zusammenhänge zwischen Aufbau und Funktion erleichtert.

Die Größe der Membranporen lässt sich über den pH-Wert, die Scherrate und den Vernetzungsgrad gezielt einstellen. So wird die selektive Freisetzung von Nanopartikeln und Molekülen unterschiedlicher Größe möglich. Auch die Aktivität eines Enzyms im Inneren des Polymersoms kann über eine pH-Wert-induzierte Quellung und Entquellung der Membran gesteuert werden.

Herr Dr. Gaitzsch setzt seine wissenschaftliche Tätigkeit derzeit mithilfe eines Stipendiums der Deutschen Forschungsgemeinschaft (DFG) als Postdoc am University College London in der Arbeitsgruppe von Prof. Guiseppe Battaglia fort.

Mit dem Professor-Franz-Brandstetter-Preis wird Tim Erdmann für seine Masterarbeit „Synthese von Dithienosilol-basierten Halbleiter-Polymeren für organische Elektronik“ ausgezeichnet. Tim Erdmann präsentiert im Ergebnis seiner beeindruckend umfangreichen, kreativen und exzellent dokumentierten experimentellen Arbeit einen zuverlässigen Weg zur kontrollierten Synthese von genau definierten und stabilen halbleitenden Polymerstrukturen.

Benötigt werden solche Funktionspolymere, um Bauelemente wie organische Photovoltaikzellen, Feld-Effekt-Transistoren oder lichtemittierende Dioden (OLEDs) zu entwickeln. Organische Elektronik gilt heute als Schlüssel zur Weiterentwicklung der an ihre physikalischen Grenzen gelangenden silizium-basierten Informationstechnologie und zur Bewältigung globaler Herausforderungen.

Die Möglichkeit etwa, kunststoff-basierte elektronische Bauelemente mit effizienten Druckverfahren herzustellen und sie mit hoher Flexibilität in Systeme integrieren zu können, eröffnet ganz neue Einsatzgebiete. Der breite Einsatz von OLEDs zur Beleuchtung oder die Ablösung der in der Herstellung sehr energieaufwändigen anorganischen Solarzellen durch polymere Photovoltaikelemente können den Energiebedarf für diese Anwendung bzw. Produktionskosten in erheblicher Größenordnung senken.

Betreut wurden beide Graduierungsarbeiten von Frau Professor Brigitte Voit, Wissenschaftliche Direktorin und Leiterin des Instituts für Makromolekulare Chemie am IPF sowie Inhaberin der Professur für Organische Chemie der Polymere an der Fakultät Mathematik/Naturwissenschaften der Technischen Universität Dresden.

Fachlicher Direktkontakt:
Prof. Dr. Brigitte Voit
voit@ipfdd.de
Tel.: 0351 4658-590

Kerstin Wustrack | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ipfdd.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics