Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Crash-Simulationen an Molekülstrukturen

06.08.2009
Zienkiewicz-Preis 2008 an Dr.-Ing. Jens Wackerfuß

Dr. Jens Wackerfuß vom Fachgebiet Festkörpermechanik der TU Darmstadt wird am 23. Oktober 2009 in London mit dem "Zienkiewicz Medal and Prize 2008" ausgezeichnet.

Er erhält den Preis für seine Veröffentlichung "Molecular mechanics in the context of the finite element method". Dr. Wackerfuß ist der erste deutsche Wissenschaftler, der diese Auszeichnung erhält.

In seiner Veröffentlichung stellt Jens Wackerfuß ein effizientes numerisches Verfahren vor, das zur Simulation des mechanischen Verhaltens von atomaren Strukturen dient. Ähnliche Verfahren werden bereits in unterschiedlichen Bereichen der Ingenieurwissenschaften verwendet, zum Beispiel bei Crash-Simulationen in der Automobilindustrie.

Motiviert wurde die Arbeit von Dr. Wackerfuß durch die jüngst erzielten Fortschritte bei der systematischen Herstellung von Molekülstrukturen. Derartige Strukturen besitzen ein großes Anwendungspotential im Bereich der Nanotechnologie. Da experimentelle Untersuchungen an diesen winzigen Bauteilen sehr aufwendig sind, spielen computerunterstützte Simulationsverfahren eine immer wichtigere Rolle.

Dr. Wackerfuß setzte das von ihm entwickelte numerische Verfahren zur Untersuchung von "carbon nanotubes" (CNTs) ein. CNTs zeichnen sich durch hervorragende mechanische, elektrische und optische Eigenschaften aus und spielen daher eine wichtige Rolle bei neuen Anwendungen im Bereich der Nanotechnologie. Ein CNT besteht aus Kohlenstoffatomen, die in einem hexagonalen Gitter angeordnet und zu einer zylinderförmigen Struktur aufgerollt sind. Der in der Abbildung 1 schematisch (in drei senkrecht zueinander stehenden Ansichten) dargestellte CNT besteht aus insgesamt 799 Atomen.

Ein Defekt in Form eines fehlenden Atoms wurde in der Mitte der ca. vier Nanometer langen Struktur eingeführt. Zur Bestimmung der Torsionsfestigkeit des CNT werden die beiden Enden schrittweise axial gegenseitig verdreht. Der gesamte Deformationsprozess konnte an einem normalen Arbeitsplatzrechner innerhalb weniger Sekunden berechnet werden, was die Effizienz des neu entwickelten Verfahrens zeigt. Das Ergebnis der Finite-Element-Simulation ist in Abbildung 2 und 3 in Form des deformierten CNT dargestellt. Man erkennt deutlich das Ausbilden eines Scherbandes, das sich - ausgehend von der Defektstelle - diagonal über die Struktur erstreckt.

Im Detail
Jens Wackerfuß ist es gelungen, die mathematischen Gleichungen der Molekularmechanik in den Formalismus der Finite-Element-Methode (FEM) systematisch einzubetten. Dabei wird in erster Linie das mathematische Gerüst der modular aufgebauten FEM ausgenutzt; eine Approximation im eigentlichen Sinne eines Diskretisierungsverfahrens findet dagegen nicht statt.

Die von Dr. Wackerfuß entwickelte Methode ist in der Lage die Potentialfunktionen, die die interatomaren Wechselwirkungen beschreiben, mathematisch exakt abzubilden. Ausgehend von einer Charakterisierung und Parametrisierung der interatomaren Wechselwirkung gelingt es ihm erstmals, einen eindeutigen Zusammenhang zwischen dem spezifischen Wechselwirkungsverhalten und dem zugehörigen Finite-Elementtyp herzustellen. Das Verfahren kann somit auf beliebige atomare Strukturen angewendet werden.

Einfach integrierbar
Die Methode lässt sich einfach in bereits existierende Finite-Element-Codes implementieren. Dazu werden die neu entwickelten Elementtypen mit Hilfe der üblichen Schnittstellen in den Code eingebettet. Zur mechanischen Analyse von atomaren Strukturen kann somit automatisch auf alle im jeweiligen Code bereits implementierten Tools zurückgegriffen werden. Dies betrifft, neben effizienten Gleichungslösern oder dem "Postprocessing", auch spezielle numerische Verfahren, die zum Lösen besonderer Ingenieurprobleme (z.B. mechanische Instabilitäten) entwickelt wurden. Wie Dr. Wackerfuß in seiner Arbeit gezeigt hat, ist auch die Kombination der von ihm entwickelten Finite-Elemente mit Standard-Finite-Elementen möglich. Eine Eigenschaft, die beispielsweise bei der Entwicklung von Mehrskalenmodellen ausgenutzt werden kann.
Leicht übertragbar
Eine weitere Anwendung findet die von Dr. Wackerfuß entwickelte Methode im Bereich der Biochemie. Wissenschaftler einer Forschungseinrichtung in Heidelberg, die sich mit der Modellierung von Molekülen und Zellen beschäftigen, sind auf die Veröffentlichung von Dr. Wackerfuß aufmerksam geworden. Mittlerweile besteht eine Kooperation mit dem Ziel, die entwickelte Methode für die Beschreibung von Dockingprozessen bei Proteinen einzusetzen.
Zum wissenschaftlichen Werdegang von Dr. Wackerfuß:
Jens Wackerfuß studierte Bauingenieurwesen an der Technischen Universität Darmstadt. Nach seinem Diplomabschluss im Jahre 1997 arbeitete er drei Jahre als Projektleiter in einem Darmstädter Ingenieurbüro. Mit dem Ziel der Promotion kehrte er im Jahre 2000 wieder an seine Alma Mater zurück. Zum Thema "Theoretische und numerische Beiträge zur Beschreibung von Lokalisierungsphänomenen in der Strukturmechanik" promovierte er im Jahre 2005.

In der daran anschließenden Postdoc-Phase forschte er ein Jahr an der renommierten University of California, Berkeley (USA). Während dieser Zeit entstand die nun prämierte Forschungsarbeit. Zurzeit ist Dr. Wackerfuß Habilitand bei Prof. Dr.-Ing. habil. F. Gruttmann am Fachgebiet Festkörpermechanik der TU Darmstadt.

Zum Preis:
Der Preis wird zu Ehren von Prof. Zienkiewicz verliehen, einem britischen Mathematiker und einem der Pioniere der Finite-Element-Methode. Er wurde 1998 vom Verlag John Wiley & Sons Ltd. gestiftet. Seitdem wird diese internationale Auszeichnung (Medaille und £ 1.000) alle zwei Jahre an einen promovierten Wissenschaftler unter 40 Jahren für eine herausragende Forschungsarbeit auf dem Gebiet der Numerischen Verfahren im Ingenieurwesen vergeben.

Die Jury um Prof. Zienkiewicz zeichnete Jens Wackerfuß für seine Veröffentlichung "Molecular mechanics in the context of the finite element method" aus, die im "International Journal for Numerical Methods in Engineering" im Juli 2008 akzeptiert und im Februar 2009 publiziert wurde.

Kontaktadresse:
Dr.-Ing. Jens Wackerfuß
Fachgebiet Festkörpermechanik
Fachbereich Bauingenieurwesen und Geodäsie
Technische Universität Darmstadt
wackerfuss@mechanik.tu-darmstadt.de
Tel. 06151/ 16-2991

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet
02.12.2016 | Universität zu Lübeck

nachricht Ohne erhöhtes Blutungsrisiko: Schlaganfall innovativ therapieren
02.12.2016 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie