CAU-Wissenschaftlerin erhält EU-Förderung zur Entwicklung neuer Implantate

Im Labor an der Technischen Fakultät besiedeln Christine Selhuber-Unkel (rechts), Mohammadreza Taale und Christine Arndt vom Institut für Materialwissenschaften das neue Biomaterial mit Zellen. Foto: Julia Siekmann/CAU

In einem jetzt gestarteten Projekt will das Forschungsteam um Professorin Christine Selhuber-Unkel das Material zur Marktreife bringen. Gefördert wird es vom Europäischen Forschungsrat mit einem sogenannten Proof-of-Concept-Grant in Höhe von rund 150.000 Euro, mit dem Erkenntnisse aus der Grundlagenforschung schneller in die Anwendung gebracht werden sollen.

Wie sich die Zellen des menschlichen Körpers verhalten, hängt auch von ihrer Umgebung ab. Über Rezeptoren an ihrer Oberfläche erkennen sie äußere mechanische Reize wie die Berührung anderer Zellen oder Oberflächen. Diese Informationen wandeln Zellen in biologische Prozesse um (die sogenannte Mechanotransduktion) und beginnen, sich zu teilen, zu differenzieren oder zu wandern.

Christine Selhuber-Unkel, Professorin für Biokompatible Nanomaterialien am Institut für Materialwissenschaft, hat mit ihrer Arbeitsgruppe ein Material entwickelt, mit dem sie diesen zellulären Mechanismus imitieren kann. Mit seiner Hilfe lässt sich das Verhalten von Zellen gezielt beeinflussen. „Dank seiner Ähnlichkeit mit der natürlichen Zellumgebung könnte das Material als Implantat in der regenerativen Medizin oder zur Lagerung von Zellen für die Stammzelltherapie genutzt werden“, so die Materialwissenschaftlerin der CAU.

Mit der EU-Förderung will Selhuber-Unkel das Material jetzt zur Marktreife bringen. „Im Austausch mit potenziellen Kunden wollen wir es anhand konkreter Anforderungen weiterentwickeln. Dafür sind wir eng vernetzt mit verschiedenen Ausgründungen der CAU und werden Kontakt zu weiteren Firmen aufnehmen“, kündigt Selhuber-Unkel an. Am Ende des Projektes soll ein biokompatibler Prototyp stehen, der sich kostengünstig für verschiedene Anwendungen produzieren lässt.

Forschungsergebnisse zum Nutzen der Gesellschaft anwendbar zu machen und damit den Technologietransfer zu stärken, ist das Ziel der Förderlinie des Europäischen Forschungsrates. „Als Universität wollen wir gesellschaftliche Probleme lösen und unmittelbar das Leben der Menschen verbessern. Deshalb arbeiten wir daran, unsere Forschungserkenntnisse schneller in die Anwendung zu bringen. Das Projekt gibt uns Impulse, wie dieser Transfer künftig besser und zielgenauer erfolgen kann“, freut sich Professorin Karin Schwarz, Vizepräsidentin für Forschung und Technologietransfer an der CAU über die erste bewilligte Förderung dieser Art in Schleswig-Holstein.

Das Besondere an dem neuen Material sind die miteinander verbundenen Hohlkanäle in seinem Inneren: Nur wenige Mikrometer breit durchziehen sie das weiche Hydrogel wie ein System feiner Gänge. Dieser Aufbau ähnelt dem Gerüst aus Proteinen, das Zellen im menschlichen Körper umgibt. Zellen, die in den Kanälen des Hydrogels platziert werden, reagieren über ihre Oberfläche auf das sie umgebende Material. „Der große Vorteil ist, dass wir die Größe und Anordnung der Kanäle bei der Herstellung des Materials genau festlegen können. So nehmen wir gezielt Einfluss auf das Reaktionsverhalten der Zelle und regen sie zum Beispiel zum Wachsen an“, sagt Selhuber-Unkel.

Die Wirksamkeit des Materials wird noch verstärkt durch seine Dreidimensionalität. Denn in den feinen Kanälen sind die Zellen rundherum von dem Hydrogel umgeben. Auf diese Weise kommt es mit etwa 80 Prozent der Zelloberfläche in Kontakt, während es in flacher Form nur 50 Prozent berühren würde. „Mehr Kontakt bedeutet mehr Kontrolle“, fasst Selhuber-Unkel ein grundlegendes Prinzip des Projektes „Channelmat“ (von englisch „Channel“ für Kanal und „Mat“ für Material) zusammen. Es ist das Resultat einer Kooperation mit der Arbeitsgruppe Funktionale Nanomaterialien um Professor Rainer Adelung im CAU-Forschungsschwerpunkt Kiel Nano, Surface and Interface Science. Die Wissenschaftlerinnen und Wissenschaftler haben ihr Material bereits als Patent angemeldet.

Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2017/2017-362-1.jpg
Bildunterschrift: Im Labor an der Technischen Fakultät besiedeln Christine Selhuber-Unkel (rechts), Mohammadreza Taale und Christine Arndt vom Institut für Materialwissenschaften das neue Biomaterial mit Zellen.
Foto: Siekmann/CAU

http://www.uni-kiel.de/download/pm/2017/2017-362-2.png
Bildunterschrift: Das softe Hydrogel könnte zum Beispiel als Implantat in der regenerativen Medizin eingesetzt werden. Seine Marktfähigkeit will das Kieler Team jetzt testen.
Copyright: Christine Arndt

http://www.uni-kiel.de/download/pm/2017/2017-362-3.jpg
Bildunterschrift: Auf der Oberfläche des Materials sind die Hohlkanäle zu erkennen, die sich miteinander verbunden durch das Innere ziehen. Dieser Aufbau ähnelt dem Gerüst aus Proteinen, das Zellen natürlicherweise umgibt.
Copyright: Katharina Siemsen

Informationen zur Förderung Proof-of-Concept-Grant
Mit der Proof-of-Concept-Förderung sollen innovative Forschungsideen aus Projekten, die vom Europäischen Forschungsrat (ERC) bereits mit einem ERC-Grant gefördert wurden, auf ihre Anwendbarkeit geprüft und für den Markt weiterentwickelt werden. Die Fördersumme in Höhe von 150.000 Euro pro Projekt kann zum Beispiel eingesetzt werden für Marktforschung, Machbarkeitsstudien oder zur Erstellung eines Business-Plans. Mit dem Proof-of-Concept-Grant will der Europäische Forschungsrat eine Lücke schließen zwischen Grundlagenforschung und der ersten Phasen der Anwendung.
Mehr Informationen: https://erc.europa.eu/funding/proof-concept

Kontakt:
Professorin Christine Selhuber-Unkel
Biokompatible Nanomaterialien
Institut für Materialwissenschaft
Tel.: +49 431 880 6198
E-Mail: cse@tf.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text/Redaktion: Julia Siekmann
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen.

Mehr Informationen auf http://www.kinsis.uni-kiel.de

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer