Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Carl-Ramsauer-Preis 2008 geht gleich zweimal ans Max-Born-Institut

11.11.2008
Physikalische Gesellschaft zu Berlin verleiht Preis an exzellente junge Physiker

Dr. Claus Ropers (31) und Dr. Anke B. Schmidt (31) sind zwei der diesjährigen Preisträger des Carl-Ramsauer-Preises der Physikalischen Gesellschaft zu Berlin.

Claus Ropers wird für seine Dissertation an der Humboldt-Universität ausgezeichnet, Anke B. Schmidt promovierte an der Freien Universität; die Arbeiten dazu führten die beiden Forscher am Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) durch. Der Preis wird am 19. November in der Universität Potsdam verliehen.

Claus Ropers
Auf dem Gebiet der Nano-Optik versuchen Physiker, Licht in kleinsten Maßstäben zu beherrschen. Eines der Ziele ist es, optische und elektronische Technologien auf einem Mikrochip zu vereinen. In diesem Zusammenhang hat sich Claus Ropers im Rahmen seiner Dissertation mit den grundlegenden Eigenschaften plasmonischer Anregungen in metallischen Nanostrukturen beschäftigt. Solche Anregungen entstehen beispielsweise, wenn Laserlicht unter einem bestimmten Winkel auf ein feines Metallgitter fällt. Das Licht wird dann nicht nur reflektiert, sondern kann sich eine zeitlang auf der Oberfläche des Metallgitters ausbreiten - die Physiker sprechen von Oberfächenplasmonen.

Ropers untersuchte die Ultrakurzzeitdynamik von solchen Oberflächenplasmonen. Mit einer speziellen Interferenzmessung konnte Ropers Lebensdauern der Oberflächenplasmonen von über 200 Femtosekunden beobachten, was weitaus länger ist, als bisher für diese Strukturen vermutet wurde. Weiter ermittelte er die elektromagnetische Feldverteilung nahe der metallischen Oberfläche mit einem eigens dafür konstruierten spektral auflösenden optischen Nahfeldmikroskop. Die Kombination der verschiedenen zeitlich und räumlich auflösenden Messverfahren lieferte völlig neue Einblicke und ein tieferes Verständnis dieser Nanostrukturen.

In einem weiteren Ergebnis seiner Grundlagenexperimente entwickelte der Physiker eine neuartige nanoskopische Lichtquelle. Er verwendete dafür eine goldene Nadel, auf deren Spitze eine Gitterstruktur eingraviert war. Durch Bestrahlung mit Laserimpulsen bildeten sich Oberflächenplasmonen, die am Ende der Nadel einen extrem intensiven, winzig kleinen Lichtpunkt erzeugten - viel kleiner, als man es mit einer herkömmlichen Linse erreichen könnte. Der Effekt könnte ganz neue Anwendungen in der Mikroskopie ermöglichen, wenn sehr kleine Lichtquellen für eine hohe Auflösung benötigt werden. Seine Ergebnisse publizierte Ropers in einer Reihe hoch angesehener Fachzeitschriften.

Für den Betreuer der Arbeit, Prof. Thomas Elsässer, Direktor am Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, ist Claus Ropers ein herausragender Nachwuchswissenschaftler, der auf dem Gebiet der Festkörperphysik Bedeutendes geleistet hat. Elsässer schätzt insbesondere das große experimentelle Geschick und das mathematische Talent des jungen Physikers; letzteres hat er zur quantitativen theoretischen Modellierung der experimentellen Ergebnisse genutzt. Seit 1. Juli 2008 ist Claus Ropers Juniorprofessor an der Universität Göttingen. Er baut dort eine Arbeitsgruppe am "Courant Forschungszentrum Nano-Spektroskopie" auf.

Weitere Informationen:
Prof. Claus Ropers, Universität Göttingen, Tel.: 0551 39 4549, E-Mail: cropers@gwdg.de

Prof. Thomas Elsässer, Max-Born-Institut, Tel.: 030 6392 1401, E-Mail: elsasser@mbi-berlin.de

Anke B. Schmidt
Während magnetische Speicher in heutigen Festplatten in Nanosekunden beschrieben werden, zeigen Laserexperimente optisch ausgelöstes Schalten auf der Zeitskala von Femtosekunden, also eine Million mal schneller. Bisher ist allerdings noch unbekannt wie dieses ultraschnelle Schalten mikroskopisch funktioniert. Anke Schmidt untersuchte in ihrer Doktorarbeit, welche Prozesse an der Entmagnetisierung von ferromagnetischen Schichten durch ultrakurze Laserimpulse beteiligt sein können.

Das ultraschnelle Schalten verblüfft Forscher nach wie vor: Der Eigendrehimpuls eines Elektrons, der sogenannte Spin, verleiht Elektronen ein eigenes (sehr kleines) magnetisches Moment, ähnlich einer winzigen Kompassnadel. In einem ferromagnetischen Material zeigt die Mehrheit der Elektronenspins in eine Richtung, was Eisen, Nickel und Co ihre Magnetisierung verleiht. Um die Magnetisierungsrichtung eines magnetischen Bits zu verändern, müssen also Elektronenspins gedreht werden, d.h. Elektronen müssen ihren (Eigen)Drehimpuls abgeben, zum Beispiel an das Kristallgitter. Letzterer Prozess ist allerdings zu langsam um das ultraschnelle Ummagnetisieren erklären zu können. Es müsste daher entweder die Drehimpulserhaltung verletzt werden - neben Energie und Impuls eine der wichtigsten Erhaltungsgrößen - oder ein schnellerer Prozess gefunden werden, mit dem Elektronen ihren Drehimpuls loswerden können.

Ein möglicher Prozess wäre die Verteilung des Drehimpulses von einem auf ganz viele Elektronen, was der Anregung einer so genannten Spinwelle, auch Magnon genannt, entspricht. Diese Elektronen bräuchten dann wiederum nur ihr kleines bisschen Drehimpuls auf das Kristallgitter zu übertragen. Anke Schmidt führte in ihrer Doktorarbeit verschiedene Experimente durch, mit denen sie untersuchte, wie schnell ein einzelnes Elektron solch eine Spinwelle erzeugen kann. Es stellte sich heraus, dass dieser Prozess nur wenige Femtosekunden benötigt und daher beim Femtomagnetismus eine große Rolle spielt.

Für ihre Untersuchungen verwendete Frau Schmidt unter anderem die Methode der zeitaufgelösten Photoemissionspektroskopie. Das von ihr maßgeblich mitentwickelte Experiment liefert nach Einschätzung ihrer Fachkollegen heute die "qualitativ weltweit besten, spin- und zeitaufgelösten Zwei-Photonen-Photoemissionsmesskurven".

Weitere Informationen:
Dr. Anke B. Schmidt, Universität Münster, Tel.: 0251 83 33668, E-Mail: anke.schmidt@uni-muenster.de

Prof. Martin Weinelt, Max-Born-Institut, Tel.: 030 6392 1210, E-Mail: weinelt@mbi-berlin.de

Christine Vollgraf | idw
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope
20.10.2017 | Freie Universität Berlin

nachricht Gitterdynamiken in ionischen Leitern
18.10.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise