Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

BMBF fördert MS-Forschungsprojekt des UKE mit 1,6 Millionen Euro

26.08.2014

Prof. Dr. Manuel Friese, Direktor des Instituts für Neuroimmunologie und Multiple Sklerose (INIMS) des Universitätsklinikums Hamburg-Eppendorf (UKE), erhält vom Bundesministerium für Bildung und Forschung (BMBF) für sein MS-Forschungsprojekt „Niedermolekulare Wirkstoff-Identifikation für die Inhibition des Ionenkanals TRPM4 zur Neuroprotektion bei Multiple Sklerose“ eine Förderung von rund 1,6 Millionen Euro. Ziel des Projekts ist es, einen Wirkstoff zu entwickeln, der den voranschreitenden Nervenzelluntergang bei der Multiplen Sklerose (MS) aufhält. Das Forschungsprojekt läuft über 1,5 Jahre.

„Wir wollen ein neues Arzneimittel für die Behandlung neurodegenerativer Prozesse im Zentralnervensystem der Multiplen Sklerose entwickeln“, sagt Projektleiter Prof. Dr. Manuel Friese vom Institut für Neuroimmunologie und Multiple Sklerose des UKE. Bei der Multiplen Sklerose (MS) spielen sowohl entzündliche als auch neurodegenerative Prozesse im Zentralnervensystem eine wichtige Rolle.

Derzeit befinden sich zur Behandlung der MS ausschließlich anti-entzündliche Wirkstoffe auf dem Markt, die auf die langfristige Schädigung der Nervenzellen nur einen begrenzten Einfluss haben. Daher besteht ein Bedarf an Wirkstoffen, die Nervenzellen vor entzündlichen Angriffen schützen oder widerstandsfähiger machen können. Dieses wird durch die Entwicklung eines nieder-molekularen Wirkstoffes zur Blockierung des Ionenkanals „Transient Receptor Potential Melastatin 4 (TRPM4)“ angestrebt.

Dass die Blockade dieses Ionenkanals für die Behandlung der MS einen aussichtsreichen Wirkmechanismus darstellen könnte, wurde zuvor im Labor von Prof. Friese im UKE entdeckt. „Wir konnten im Modell erstmals zeigen, dass beim Untergang von Nervenzellen im Rahmen von chronischen Entzündungen des Nervensystems wie MS ein spezielles Molekül namens TRPM4 eine zentrale Rolle spielt“, sagt Prof. Friese.

Das Molekül TRPM4 bildet einen Ionenkanal in der Zellmembran von Nervenzellen. Durch diesen Kanal strömen v.a. Natrium-Ionen (Na+) von außen in das Innere der Zellen ein. „Durch eine chronische Entzündung wird der Kanal dauerhaft aktiviert, was zu einer Störung des Ionengleichgewichts in den Nervenzellen und zu deren Untergang führt“, so Friese. Diesen Zusammenhang konnte die Forschergruppe um Prof. Friese, deren Arbeit von der Hertie-Stiftung und dem Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) zuvor unterstützt wurde, in der Zellkultur und im Modell bereits 2012 zeigen.

Mit der vom Bundesministerium für Bildung und Forschung (BMBF) bereitgestellten Fördersumme kann die Entwicklung von ersten Rohsubstanzen, die den Ionenkanal TRPM4 blockieren, finanziert und damit der erste Schritt von der wissenschaftlichen Erkenntnis zum Medikament getan werden. In einem zweiten Schritt könnten diese Wirkstoffkandidaten dann anschließend mit Unterstützung einer Pharmafirma zu Medikamenten weiterentwickelt werden.

Die Identifizierung derartiger Wirkstoffe kann ein Ausgangspunkt für die Entwicklung neuer Medikamente für MS und andere neurodegenerative Erkrankungen sein. „Für einen Forscher in der Medizin ist das eine aufregende Zeit, denn das Ziel aller unserer Bestrebungen ist es, eine Erkenntnis im Labor tatsächlich in die Medikamentenentwicklung umzusetzen“, sagt Prof. Friese. „Die öffentlichen Fördermittel tragen daher entscheidend dazu bei, wissenschaftliche Erkenntnisse aus dem akademischen Bereich für medikamentöse Therapieansätze nutzbar zu machen.“

An dem Forschungsvorhaben sind neben dem Institut für Neuroimmunologie und Multiple Sklerose (INIMS; Prof. Dr. Manuel Friese) des UKE auch noch die Evotec AG und der ScreeningPort des Fraunhofer-Instituts für Molekularbiologie und Angewandte Oekologie IME beteiligt. Die Validierung von TRPM4 als attraktives Target auch in der pharmazeutischen MS-Forschung fand vorab im Rahmen der BioPharma/NEU² Initiative (www.neu-quadrat.de) statt.

Kontakt:
Prof. Dr. Manuel A. Friese
Institut für Neuroimmunologie und Multiple Sklerose (INIMS)
Zentrum für Molekulare Neurobiologie Hamburg (ZMNH)
Universitätsklinikum Hamburg-Eppendorf
Falkenried 94
20251 Hamburg
Tel.: (040) 7410-57277
E-Mail: manuel.friese@zmnh.uni-hamburg.de

Christine Trowitzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise