Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Better understanding of cell renewal and cellular quality control

09.12.2015

The German Research Foundation (Deutsche Forschungsgemeinschaft/DFG) has approved 11 million Euro for the next four years for establishing a CRC on selective autophagy under the lead of Goethe University.

The German Research Foundation (Deutsche Forschungsgemeinschaft/DFG) has approved 11 million Euro for the next four years for establishing a CRC on selective autophagy under the lead of Goethe University. Autophagy literally means "self-eating" and refers to a sophisticated system in which cellular waste is specifically detected and removed.

It contributes to regular cell renewal, secures quality control and protects against diseases. Defects in this pathway can promote cancer development and neurodegenerative diseases like Parkinson, and contribute to infectious diseases and inflammatory reactions. The objective of the CRC is a better understanding of autophagy at the molecular and cellular level. In future, the researchers hope to be able to specifically target autophagy for improving the therapy of diverse diseases.

Professor Birgitta Wolff, President of the University, congratulated the researchers: “Well done to Ivan Dikic and his team for achieving this important milestone. The research planned within the CRC forms a promising basis for the development of new and more effective therapies. We are particularly pleased that we will be joining forces with Mainz University, the Institute of Molecular Biology in Mainz and the Georg-Speyer-Haus in the CRC – a further sign of the vitality of our regional partnerships.”

Autophagy is conserved from simple organisms such as yeast up to complex ones like humans. Typical targets for autophagy are harmful or superfluous proteins - it degrades for example aggregated proteins, which can otherwise lead to severe damage and cell death, as observed in numerous neurodegenerative diseases. Even entire cell organelles and invading pathogens such as bacteria or viruses can be eliminated via this pathway. The building blocks generated through this degradation process are recycled, which is why autophagy also functions as a survival strategy in times of low energy supply.

Autophagy is a highly complex and precisely regulated process which requires a concerted action by numerous players: The target substrate needs to be specifically recognized and surrounded by membranes to form what is known as the autophagosome. Autophagosomes fuse with lysosomes, which are cell organelles filled with digestive enzymes, finally enabling the breakdown of all cargo into the individual building blocks.

“The enormous significance of autophagy for the pathophysiology of diseases has only been recognized in the past decade. As a result, research activity in this field has increased rapidly”, explains Professor Ivan Dikic, CRC Speaker and Director of the Institute of Biochemistry II at Goethe University. “By strategic recruitments over the past five years, we have succeeded in developing Frankfurt into a centre for autophagy research. Now we are in a position to address many of the unanswered questions: What triggers autophagy? How does the cell select targets for autophagy? How does this pathway crosstalk to other cellular mechanisms and how is it involved in the pathogenesis of human diseases?”

Meanwhile it is known that the role of autophagy strongly depends on the cellular context: In healthy tissues, it prevents the emergence of cancer cells. At the same time, however, cancer cells capitalize on autophagy to overcome bottlenecks in nutrient supply, which occur as a result of rapid tumour growth. The researchers are now analysing this complex interaction. So far, little is known about the interplay of autophagy with other mechanisms, such as cellular trafficking (endocytosis), programmed cell death (apoptosis) and the ubiquitination system, which marks proteins for degradation in the proteasome.

Within the newly established CRC, researchers will study autophagy at the level of molecules, cells and model organisms. It is the first large-scale collaborative project in this field in Germany and allows scientists in Frankfurt and Mainz to position themselves in an internationally highly competitive field. A broad line-up of disciplines is needed to tackle the open questions, and therefore, within the CRC, structural biologists have teamed up with biochemists, cell biologists and clinicians. New insight into the molecular mechanisms underlying autophagy will be directly transferred to model systems for human diseases.

At Goethe University, the three faculties of Biological Sciences, Biochemistry, Chemistry and Pharmacy, and Medicine, and the cross-disciplinary Buchmann Institute for Molecular Life Sciences (BMLS) are participating in the CRC. Partners outside the University are the Institute for Pathobiochemistry at the University Medical Center of Johannes Gutenberg University Mainz (Prof. Dr. Christian Behl is Vice Speaker of the CRC), the Georg-Speyer-Haus in Frankfurt and the Institute of Molecular Biology gGmbH in Mainz.

Further information: Prof. Ivan Dikic, Institute of Biochemistry II, University Hospital Frankfurt, Tel.: (069) 6301-5652, Ivan.Dikic@biochem2.de.

Goethe University is a research-oriented university in the European financial centre Frankfurt founded in 1914 with purely private funds by liberally-oriented Frankfurt citizens. It is dedicated to research and education under the motto "Science for Society" and to this day continues to function as a "citizens’ university". Many of the early benefactors were Jewish. Over the past 100 years, Goethe University has done pioneering work in the social and sociological sciences, chemistry, quantum physics, brain research and labour law. It gained a unique level of autonomy on 1 January 2008 by returning to its historic roots as a privately funded university. Today, it is among the top ten in external funding and among the top three largest universities in Germany, with three clusters of excellence in medicine, life sciences and the humanities.

Publisher: The President of Goethe University
Editor: Dr. Anke Sauter, Science Editor, International Communication, Tel: +49(0)69 798-12477, Fax +49(0)69 798-761 12531, sauter@pvw.uni-frankfurt.de
Internet: www.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Rudolf-Virchow-Preis 2017 – wegweisende Forschung zu einer seltenen Form des Hodgkin-Lymphoms
23.06.2017 | Deutsche Gesellschaft für Pathologie e.V.

nachricht Repairon erhält Finanzierung für die Entwicklung künstlicher Herzmuskelgewebe
23.06.2017 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften