Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Descartes-Preis an H.E.S.S.-Team

08.03.2007
Europäische Auszeichnung für Weltraumforschung mit höchstenergetischen Strahlen
Die Internationale Kooperation High Energy Stereoscopic System (H.E.S.S.) hat den Descartes-Forschungspreis erhalten; federführend bei H.E.S.S ist das Heidelberger Max-Planck-Institut für Kernphysik. Die Bundesministerin für Bildung und Forschung Annette Schavan verlieh am Mittwoch gemeinsam mit EU-Forschungskommissar Janez Potoènik die mit 1 Million Euro dotierte Auszeichnung.

Die Preisverleihung fand in Brüssel zum Start des 7. Europäischen Forschungsrahmenprogramms mit dem Titel "Today is future" statt. Das H.E.S.S-Team teilt sich den Descartes-Preis mit zwei anderen internationalen Forschungsprojekten. Der Descartes-Preis der europäischen Kommission ist nach dem französischen Philosophen und Mathematiker Rene Descartes (1596 bis 1650) benannt und wird seit 2000 verliehen. Der Forschungspreis geht an Wissenschaftlerteams, die mit grenzüberschreitenden Projekten herausragende wissenschaftliche und technologische Ergebnisse erzielt haben.

Schon 2006 hatte es das H.E.S.S.-Team unter die zehn Finalisten geschafft - doch erst dieses Jahr glückte der Sprung aufs Podium. Die Erfolgsgeschichte des H.E.S.S.-Projekts ist in der Tat beeindruckend: Erst seit 2004 sind die Detektoren voll funktionstüchtig und haben den Wissenschaftler buchstäblich ein neues Fenster ins All eröffnet. Die H.E.S.S.-Teleskope mit ihrem großen Gesichtsfeld - es entspricht der zehnfachen Fläche des Mondes - sind ideal geeignet, um neue Quellen kosmischer Gammastrahlung zu entdecken. Die wissenschaftlichen Ergebnisse der H.E.S.S.-Beobachtungen haben in wenigen Monaten zu mehr als 30 Publikationen in Fachzeitschriften geführt, darunter viele in hochkarätigen Journalen wie Nature oder Science.

Im Folgenden eine Auswahl der wichtigsten Ergebnisse:

  • Bereits mit den ersten Messungen konnten die Forscher das erste astronomische Bild einer Supernova-Schockwelle bei allerhöchsten Energien aufnehmen. H.E.S.S. identifizierte dabei erstmals die Explosionswolken von Supernovae als Quelle hochenergetischer kosmischer Strahlung - sozusagen als gigantische kosmische Teilchenbeschleuniger.
  • Schon wenige Monate später hatte H.E.S.S. gleich acht neue Quellen hochenergetischer Gammastrahlung im Zentrum der Milchstraße gefunden - und somit die Anzahl der bis dahin bekannten Quellen nahezu verdoppelt.
  • H.E.S.S.-Experimente wiesen nach, dass hochenergetische kosmische Strahlung im Zentrum der Milchstraße intensiver ist als in der Nähe der Erde. Mögliche Erklärung für dieses Phänomen könnte sowohl eine frühere Supernova als auch eine massive Teilchenbeschleunigung durch das supermassive Schwarze Loch im Zentrum unserer Galaxis sein.
  • Im Oktober 2006 berichteten die H.E.S.S.-Wissenschaftler über die Entdeckung schnell veränderlicher, sehr hochenergetischer Gamma-Strahlung aus der riesigen Radiogalaxie M 87. Dies ist die bislang einzige Radiogalaxie, aus der Gammastrahlung mit Energien nachgewiesen wurde, die jene des sichtbaren Lichts um das Billionenfache übertreffen.
  • Ende 2006 identifizierte das H.E.S.S.-Teleskop erstmals eine regelmäßig pulsierende Gammastrahlen-Quelle in der Milchstraße. Bisherige Beobachtungen waren auf 100.000fach kleinere Energien beschränkt. Die Strahlung stammt von einem Doppelsternsystem mit dem Katalognamen LS 5039, in dem ein kompakter Körper (ein Neutronenstern oder ein Schwarzes Loch) in nur vier Tagen auf einer exzentrischen Bahn um einen blauen Riesenstern rast.

Möglich macht all diese Entdeckungen ein System aus vier Teleskopen. H.E.S.S. wurde in den Jahren 2001 bis 2003 von einem internationalen Team aus mehr als 100 Wissenschaftlern und Ingenieuren aus Deutschland, Frankreich, England, Irland, der Tschechei, Armenien, Südafrika und Namibia erbaut. Im September 2004 ging die Anlage offiziell in Betrieb. Mit jeweils 13 Meter Durchmesser sind die H.E.S.S.-Teleskope die derzeit empfindlichsten Nachweisinstrumente für hochenergetische Gammastrahlen, die sich nur schwer nachweisen lassen; selbst eine starke Quelle sendet lediglich ein Strahlungsquant pro Monat und Quadratmeter in unsere Atmosphäre, wo es absorbiert wird. Der direkte Nachweis würde somit ein riesiges Satelliteninstrument erfordern.

Daher arbeiten die H.E.S.S.-Teleskope mit einem Trick: Sie nutzen die Atmosphäre als Nachweismedium. Wenn Gammaquanten absorbiert werden, senden sie kurze Blitze des sogenannten Cherenkov-Lichts aus - ein blaues Leuchten, das nur einige milliardstel Sekunden andauert. Dieses Leuchten wird mit den großen Spiegeln und empfindlichen Photosensoren der H.E.S.S.-Teleskope aufgefangen. Aus diesen Daten erzeugen die Wissenschaftler dann Bilder astronomischer Objekte im "Licht" hochenergetischer Gammastrahlen.

Sicher hält das All noch viele Überraschungen für die H.E.S.S.-Wissenschaftler bereit. Erst vor wenigen Wochen berichteten die Forscher von ihrer jüngsten Entdeckung: einem Gammastrahler neuen Typs. Zum ersten Mal konnten sie hochenergetische Gammastrahlung einem Wolf-Rayet-Stern zuordnen - einem massereichen Stern am Ende seines Lebens aber noch vor seinem "Tod" als Supernova.

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Gammastrahlung Milchstraße Strahlung

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics