Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Für eine neue Welt der Physik: 7,2 Millionen nach Heidelberg

29.08.2006
Prof. Karlheinz Meier: "Die größten Experimente, die die Menschheit je gemacht hat" - Bundesministerium für Bildung und Forschung fördert Grundlagenforschung in der Teilchenphysik an der Heidelberger Ruprecht-Karls-Universität mit 7,2 Millionen Euro

"Das werden die größten Experimente, die die Menschheit je gemacht hat", wagt Professor Karlheinz Meier vom Kirchhoff-Institut für Physik (KIP) der Ruprecht-Karls-Universität Heidelberg einen Blick in die Zukunft. Schließlich werden in den kommenden Jahren an großen Teilchenbeschleunigern, wie etwa dem CERN in Genf, verschiedene Versuche stattfinden, welche die Welt der Physik verändern könnten.

Dabei werden die deutschen Physiker finanziell vom Bundesministerium für Bildung und Forschung (BMBF) kräftig unterstützt. Stellt das Ministerium doch in den nächsten drei Jahren insgesamt 75 Millionen Euro für die Grundlagenforschung in der Teilchenphysik zur Verfügung. Die ersten Mittel in Höhe von 32 Millionen Euro wurden nun für drei Forschungsschwerpunkte vergeben, wobei die am Heidelberger Physikalischen Institut und am KIP ansässigen Projekte insgesamt mit 7,2 Millionen Euro gefördert werden.

"Besonders bemerkenswert ist dabei, dass das BMBF ein völlig neues Förderinstrument einsetzt", erläutert Karlheinz Meier. Denn nicht die Einzelprojekte der beteiligten Institute werden gefördert, sondern Forschungsschwerpunkte, womit die Kooperation der deutschen Gruppen in überregionalen Forschungsnetzwerken verbessert werden soll. Dementsprechend sind an den drei geförderten Projekten ATLAS, CMS und ALICE auch insgesamt 17 Universitäten und das Max-Planck-Institut für Physik in München beteiligt. Dabei ist als einzige Universität die Ruperto Carola in zwei Projekten vertreten, nämlich in ATLAS und ALICE.

... mehr zu:
»Physik »ProTon

"Bei dem ATLAS-Projekt handelt es sich um Hochenergiephysik im wahrsten Sinne des Wortes", erklärt Physiker Karlheinz Meier. Denn bei diesen Experimenten werden Protonen mit einer Spannung von 14 Tera-Volt (1400 Milliarden Volt) beschleunigt. Die dabei gewonnene Bewegungsenergie wird genutzt, um neue Arten von Materie zu erzeugen. Hintergrund dieses Experimentes, für das der Large Hadron Collider (LHC) des CERN mit 1200 supraleitenden Magneten, die mit flüssigem Helium gekühlt werden, ausgestattet wurde, ist es beispielsweise herauszufinden, ob es mehr als die uns geläufigen drei Dimensionen gibt. Damit sollen Theorien überprüft werden, nach denen beispielsweise weitere sechs Dimensionen existieren.

Aber auch die Zusammensetzung der Dunklen Materie, aus der mehr als ein Fünftel des Universums besteht, wird mit diesem Experiment untersucht. "Die Physiker vermuten, dass die Dunkle Materie aus so genannten supersymmetrischen Teilchen zusammengesetzt sein könnte", zeigt Karlheinz Meier den Hintergrund des Experimentes auf. Supersymmetrische Teilchen sind vergleichbar den uns bekannten Teilchen, jedoch unterscheiden sie sich von diesen geringfügig, indem ihr so genannter Spin um eine halbe Zahl verschoben ist. Ihr experimenteller Nachweis ist bisher allerdings nicht gelungen.

Darüber hinaus soll auch ganz irdischen Phänomenen bei dem Atlas-Projekt nachgegangen werden, nämlich der Trägheit der Masse. Hierfür werden die Higgs-Bosonen verantwortlich gemacht. Jedoch sind diese bisher nur theoretisch bekannt und sollen ebenfalls erstmals in Experimenten nachgewiesen werden.

Bei dem Forschungsschwerpunkt ALICE, dessen Sprecherin die Heidelberger Professorin Johanna Stachel vom Physikalischen Institut ist, werden im Gegensatz zum ATLAS-Projekt keine Protonen, sondern Schwerionen beschleunigt. Die Struktur der aus Protonen und Neutronen bestehenden Atomkerne der Ionen löst sich aufgrund der riesigen Energien und Temperaturen auf und es wird erwartet, dass ein Quark-Gluon-Plasma entsteht. "Aus diesem Plasma sollen dann wieder Protonen und Neutronen ausgefroren werden", beschreibt Karlheinz Meier die Vorgänge bei dem ALICE-Projekt. Damit soll es gelingen, die physikalischen Prozesse aus der Frühzeit des Universums, als dieses nicht einmal eine Hundertstel Sekunde alt war, näher zu ergründen.

Doch nicht nur die Zusammenarbeit der deutschen Gruppen wird durch die Projekte an den Teilchenbeschleunigern gefördert, denn ATLAS und ALICE sind wahrlich internationale Forschungsvorhaben. So wirken alleine bei ATLAS 1800 Physiker von 150 Instituten aus 35 Ländern bei den Experimenten mit, und bei ALICE sind es etwa 1000 Physiker aus 28 Ländern, die einen Einblick in eine neue Welt der Physik gewinnen wollen.

Stefan Zeeh

Rückfragen bitte an:
Prof. Dr. Karlheinz Meier
Kirchhoff-Institut für Physik der Universität Heidelberg
Im Neuenheimer Feld 227, 69120 Heidelberg
Tel. 06221 549831
meierk@kip.uni-heidelberg.de
Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de
http://www.uni-heidelberg.de/presse

Weitere Berichte zu: Physik ProTon

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics