Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Walter Metzner erhält Europhysik-Preis 2006

29.03.2006


Prof. Walter Metzner, Direktor am Max-Planck-Institut für Festkörperforschung, ist einer der vier Preisträger, die am 29. März 2006 von der European Physical Society mit dem Europhysics Prize ausgezeichnet werden. Bild: Max-Planck-Institut für Festkörperforschung


Vier Wissenschaftler für Entwicklung und Anwendung der "Dynamischen Molekularfeldtheorie" mit dem Europhysics Prize 2006 ausgezeichnet


Am 29. März 2006 verleiht die European Physical Society auf ihrer Jahrestagung in Dresden den Europhysics Prize 2006. Die Preisträger sind: Walter Metzner vom Stuttgarter Max-Planck-Institut für Festkörperforschung, Antoine Georges von der Ecole Polytechnique in Palaiseau, Frankreich, Gabriel Kotliar von der Rutgers University, USA, und Dieter Vollhardt von der Universität Augsburg. Der mit 51.000 Schweizer Franken dotierte Preis wird von dem Messtechnik-Unternehmen Agilent Technologies gestiftet und würdigt herausragende Leistungen auf dem Gebiet der Physik kondensierter Materie (Festkörper und Flüssigkeiten). Die vier Physiker werden für die Entwicklung und Anwendung der Dynamischen Molekularfeldtheorie geehrt, mit der ungewöhnliche Eigenschaften von Materialien mit "korrelierten Elektronen" erklärt und berechnet werden können. Der Europhysics Prize ist einer der wichtigsten europäischen Physik-Preise - acht seiner bisherigen Preisträger wurden später mit dem Nobelpreis ausgezeichnet.

Technischer Fortschritt ist eng mit der Entwicklung und Erforschung neuer Materialien verbunden. Neben experimentellen Untersuchungen spielen hierbei auch Berechnungen von Materialeigenschaften eine zentrale Rolle. Ohne theoretisches Verständnis der komplexen Vorgänge im Inneren der Materie verliert sich der Materialforscher schnell im Labyrinth der praktisch unbegrenzten chemischen Kombinationsmöglichkeiten.


Die physikalischen Prinzipien, die hinter der Vielfalt von Materialien und ihren Eigenschaften stehen, sind lange bekannt. Die Lösung der entsprechenden quantenmechanischen Gleichungen ist jedoch äußerst schwierig. Selbst eine kleine Probe enthält eine gewaltige Anzahl von Teilchen, die alle miteinander in Wechselwirkung stehen. Elektronen stoßen sich zum Beispiel aufgrund der Coulomb-Wechselwirkung voneinander ab. Da man die Bewegung der einzelnen Teilchen unmöglich exakt berechnen kann, ziehen Physiker statistische Methoden und Näherungen heran.

Eine bekannte und oft durchaus erfolgreiche Methode besteht darin anzunehmen, dass Elektronen nicht individuell miteinander wechselwirken, sondern mit einer Art "See", der durch Mittelung über die Positionen der jeweils anderen Elektronen gebildet wird. Hierbei werden aber so genannte elektronische Korrelationen, wie die flexible dynamische Vermeidung räumlicher Zusammenstöße von Elektronen, vernachlässigt. Solche Korrelationen spielen aber gerade bei vielen moderneren Materialien mit interessanten und technologisch nutzbaren Eigenschaften eine zentrale Rolle. Prominente Beispiele sind Hochtemperatur-Supraleiter sowie Verbindungen mit spektakulären magnetischen Eigenschaften, die sich als magnetische Speichermedien eignen.

Die Träger des Europhysik-Preises 2006 haben in den vergangenen zwei Jahrzehnten eine neue Methode zur Berechnung von Materialeigenschaften entwickelt, bei der zumindest die lokalen, das heißt intra-atomaren Korrelationen der wichtigen Valenzelektronen im Festkörper exakt behandelt werden. In dieser so genannten Dynamischen Molekularfeldtheorie (DMFT) werden Korrelationen innerhalb eines Atoms dynamisch berücksichtigt und der Einfluss der Elektronen auf benachbarten Atomen durch ein gemitteltes effektives Feld (Molekularfeld) annähernd bestimmt. Die intra-atomaren elektronischen Korrelationen sind in der Regel die stärksten Wechselwirkungen in einem Material und spielen eine entscheidende Rolle bei Magnetismus, Metall-Isolator-Übergängen sowie auch in Hochtemperatur-Supraleitern.

Ausgangspunkt für die Entwicklung der dynamischen Molekularfeldtheorie war eine ungewöhnliche, auf den ersten Blick vielleicht esoterisch erscheinende Idee. In einer 1989 in der Fachzeitschrift "Physical Review Letters" publizierten Arbeit zeigten Walter Metzner und Dieter Vollhardt, dass lokale elektronische Korrelationen auch in einem hypothetischen System mit unendlich vielen Raumdimensionen (statt der üblichen drei) erhalten blieben. Gleichzeitig treten in diesem Grenzfall drastische Vereinfachungen in den Bewegungsgleichungen auf, die eine Berechnung der Korrelationseffekte erleichtern. In einigen einfachen Modellrechnungen wurde demonstriert, dass sich physikalische Größen in dreidimensionalen Systemen mit teilweise erstaunlicher Genauigkeit durch eine Rechnung im unendlichdimensionalen Analogon reproduzieren lassen. Etwas verständlicher wird dies, wenn man beachtet, dass die Koordinationszahl, also die Anzahl von unmittelbaren Nachbarn eines jeden Atoms, in dreidimensionalen Systemen je nach Kristallstruktur immerhin bei Werten zwischen 6 und 12 liegt, was in gewisser Hinsicht von unendlich gar nicht mehr so weit entfernt ist.

Die Arbeit von Walter Metzner und Dieter Vollhardt wurde rasch von anderen Forschern aufgegriffen und weiterentwickelt. Bedeutende frühe Beiträge kamen insbesondere von Erwin Müller-Hartmann von der Universität Köln. Antoine Georges und Gabriel Kotliar stellten schließlich in einer 1992 publizierten Arbeit eine elegante Verbindung her zwischen dem System wechselwirkender Elektronen im Limes hoher Raumdimensionen und so genannten Quantenstörstellen-Modellen, bei denen die Elektronen nur innerhalb eines einzelnen Atoms miteinander wechselwirken. Sie brachten damit die dynamische Molekularfeldtheorie auf eine sowohl für die physikalische Interpretation als auch für konkrete Berechnungen besonders geeignete Form.

Die dynamische Molekularfeldtheorie ist inzwischen eine weltweit eingesetzte Standardmethode, die aus der modernen Materialforschung nicht mehr wegzudenken ist. Die vielfältigen Anwendungen reichen von der Untersuchung fundamentaler Fragen der Festkörperphysik bis hin zur Berechnung spezifischer Materialeigenschaften. In den letzten Jahren hat man begonnen, die Theorie durch Einbeziehung interatomarer Korrelationen zwischen Elektronen auszubauen. Erste Anwendungen dieser erweiterten dynamischen Molekularfeld-Methoden auf die theoretisch nur schwer zugänglichen Hochtemperatur-Supraleiter sind vielversprechend.

Prof. Dr. Walter Metzner ist Direktor am Max-Planck-Institut für Festkörperforschung in Stuttgart. Nach dem Studium der Mathematik und Physik an der Technischen Universität München erhielt er ein Promotionsstipendium der Studienstiftung des deutschen Volkes. 1989 promovierte er an der Rheinisch-Westfälischen Technischen Hochschule (RWTH) Aachen. Nach einem mehrjährigen Auslandsaufenthalt in Rom und Princeton habilitierte Metzner 1995 an der RWTH Aachen. Zwischen 1996 und 1998 war er Professor an der Universität München und von 1998 bis 2001 Professor an der RWTH Aachen. 2001 nahm Metzner den Ruf zum Direktor am Max-Planck-Institut für Festkörperforschung an. Er wurde bereits mit dem Friedrich-Wilhelm-Preis der RWTH Aachen, dem Physik-Preis der Akademie der Wissenschaften zu Göttingen und dem Gustav-Hertz-Preis der Deutschen Physikalischen Gesellschaft ausgezeichnet. Walter Metzner wurde 1961 in München geboren.

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Atom Elektron Korrelation Molekularfeldtheorie Physik RWTH

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet
02.12.2016 | Universität zu Lübeck

nachricht Ohne erhöhtes Blutungsrisiko: Schlaganfall innovativ therapieren
02.12.2016 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie