Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtgriffel für die Chip-Industrie

14.01.2005


Gießener Atomphysiker am Lichtschalter - Deutsche Forschungsgemeinschaft fördert Projekte am Institut für Atom- und Molekülphysik (IAMP) mit rund 200.000 Euro



Das stetig vertiefte wissenschaftliche Verständnis von Ionisierungsvorgängen durch die Forschungen Gießener Atom- und Molekülphysiker lässt neue wesentliche Erkenntnisse für die Computerindustrie und vielfältige weitere Anwendungen erwarten. Zur Erforschung der atomaren Quellen für die zur Nano-Strukturierung zukünftiger Computerprozessoren benötigte Strahlung erhält die Arbeitsgruppe von Prof. Dr. Alfred Müller, Institut für Atom- und Molekülphysik (IAMP) im Fachbereich 07 - Mathematik und Informatik, Physik und Geographie der Justus-Liebig-Universität, daher jetzt von der deutschen Forschungsgemeinschaft (DFG) Sach- und Personalmittel in Höhe von rund 200.000 Euro.

... mehr zu:
»Atom »Elektron »IAMP »Ion »Physik »Strahlung


Wir sind Zeugen einer kaum vorstellbaren industriellen Entwicklung, die aufs engste mit der Entdeckung des Transistoreffekts durch die Physiker Bardeen, Brattain und Shockley verknüpft ist. Die drei Forscher wurden 1956 mit dem Nobelpreis für Physik ausgezeichnet. Auf der Basis der von ihnen erforschten physikalischen Grundlagen des Transistors erwirtschaftet die Halbleiterindustrie heute weltweit mehr als 100 Billionen US$ pro Jahr. Die Miniaturisierung elektronischer Bauelemente hat in den vergangenen 30 Jahren insbesondere die dramatische Entwicklung von Computerleistung bei fallenden Preisen ermöglicht. Alle drei Jahre hat sich in dieser Zeit die Rechenleistung von PCs vervierfacht. Das macht nach Adam Riese mehr als 1 Million Mal mehr Rechenschritte pro Sekunde in einem modernen Prozessor gegenüber dem guten alten 8080 Rechenwerk vor 30 Jahren. Schon damals lag die Größe der Strukturen auf einem Prozessor bei etwa 10 Mikrometern und damit bei einem Zehntel des Durchmessers eines menschlichen Haars. Bei den heutigen Chips liegt der typische Abstand zwischen den Leiterbahnen im Bereich von 100 Nanometern (nm), ist also um einen Faktor 100 kleiner als vor 30 Jahren.

Derzeit werden Halbleiter unter Verwendung von Licht mit einer Wellenlänge von 193 nm strukturiert. Vergleichbar mit einem Griffel auf einer Schiefertafel ritzt dieses ultraviolette Licht die Leiterbahnen und Transistoren auf das Ausgangsmaterial für die künftigen Mikroprozessoren. Die für die industrielle Fertigung notwendige Lichtleistung stellen Strahlen so genannter Excimer-Laser zur Verfügung. In den nächsten Jahren wird die Halbleiterindustrie durch Griffe in die physikalische Trickkiste mit diesem 193 nm Licht immer feinere Strukturen schreiben und den Größenbereich von 50 nm zwischen Leiterbahnen erschließen. Für den nächsten Schritt in der Miniaturisierung muss dann aber, daran geht kein Weg vorbei, eine neue Technologie her.

Wer Physik studiert, lernt bereits in den ersten Semestern, dass man für die Auflösung immer feinerer Strukturen, beispielsweise unter einem Mikroskop, Licht immer kürzerer Wellenlänge benötigt. Dementsprechend soll die Fertigung zukünftiger Chip-Generationen auf 13.5 nm Strahlen ausgelegt werden, das heißt man wird intensive Quellen für Extrem-Ultraviolett (EUV) Strahlung benötigen, deren Wellenlänge um einen Faktor 15 kleiner ist als bei den gegenwärtig verwendeten Excimer-Lasern.

Die Entwicklung solcher Lichtquellen hat bereits begonnen, Deutschland nimmt auf diesem Gebiet eine führende Stellung ein. Mit geeigneten physikalischen Methoden heizt man ein Gas so weit auf, dass es intensiv leuchtet. Es wird zu einem Plasma, in dem neben den unversehrten Atomen auch solche vorkommen, denen Elektronen aus der Atomhülle entrissen wurden. Die durch das Entfernen der elektrisch negativ geladenen Elektronen nun ihrerseits elektrisch positiv geladenen Atome nennt man Ionen.

Nicht jedes Gas ist für die benötigte Strahlungs-Wellenlänge geeignet. Der Grund hierfür liegt in den elektronischen Eigenschaften der Gasatome bzw. deren Ionen in ihren verschiedenen Ladungszuständen. Elektrisch geladene Atome sind letztlich die Quelle für das benötigte kurzwellige Licht. Als besonders geeignet wurden zehnfach positiv geladene Ionen des Edelgases Xenon erkannt. Diese Ionen senden intensiv EUV Strahlung im Bereich der gewünschten 13.5 nm aus. Bei Zinn-Atomen findet man sogar, dass es gar nicht so sehr auf die Anzahl der abgelösten Elektronen ankommt. Egal ob sieben, acht, neun oder bis zu zwölf Elektronen fehlen, die so präparierten Zinn-Atome senden alle 13.5 nm Strahlung aus.

Die Erzeugung mehrfach geladener Ionen und die Erforschung ihres mikroskopischen Verhaltens fallen in das Spezialgebiet der Wissenschaftler und Techniker am Institut für Atom- und Molekülphysik. Dort wurden in weltweit einzigartigem Umfang Technologien zur Erforschung mehrfach geladener Ionen entwickelt und das damit verbundene Spezialwissen zusammengetragen. An den umfangreichen Apparaturen im Haus, aber auch an externen Großforschungsanlagen wie zum Beispiel den Beschleunigern der Gesellschaft für Schwerionenforschung in Darmstadt oder an der "Advanced Light Source" in Berkeley, USA, wird das Verhalten von Ionen unter den extremen Bedingungen eines Plasmas untersucht.

Eine Spezialität des Instituts ist die experimentelle Technik der kollidierenden Strahlen (zum Beispiel einander überkreuzende Strahlen von Elektronen und Ionen). Darauf basieren die am IAMP durchgeführten Untersuchungen atomarer Prozesse, die bei einzelnen Stößen zwischen Ionen und freien Elektronen, EUV-Photonen, Atomen oder anderen Ionen, eben den mikroskopischen Bestandteilen eines Plasmas, auftreten. Auf dieser Basis bestehen beste Voraussetzungen für eine Investition der Deutschen Forschungsgemeinschaft in eine Sub-Nanotechnologie, wie sie am IAMP verfolgt wird, in diesem Fall die Erforschung von Lichtquellen auf der atomaren Skala. Speziell soll der Frage nachgegangen werden, mit welcher Effizienz Elektronen aus Ionen der Elemente Zinn und Xenon durch Beschuss mit Elektronen entfernt werden können. Aus dem wissenschaftlichen Verständnis dieser Ionisierungsvorgänge werden neue Erkenntnisse nicht nur für die Computerindustrie erwartet, sondern darüber hinaus auch für andere Anwendungen und Bereiche der Grundlagenforschung, etwa für die Physik von Höchstleistungslasern oder das Leuchten ferner Galaxien im Universum.

Kontakt:

Prof. Dr. Alfred Müller
Institut für Atom- und Molekülphysik
Leihgesterner Weg 217
35392 Gießen
Telefon: 0641/99-15200
Fax: 0641/99-15109
E-Mail: Alfred.Mueller@strz.uni-giessen.de

Charlotte Brückner-Ihl | idw
Weitere Informationen:
http://www.strz.uni-giessen.de
http://www.strz.uni-giessen.de/~mueller

Weitere Berichte zu: Atom Elektron IAMP Ion Physik Strahlung

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Umfangreiche Fördermaßnahmen für Forschung an Chromatin, Nebenniere und Krebstherapie
28.06.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Revolutionäres Desinfektionsverfahren und Referenzmaterial für Genanalysen sind UNIQUE-Sieger
28.06.2017 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive