Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

VolkswagenStiftung bewilligt rund 3,8 Millionen Euro für 13 Projekte in der Initiative zur Erforschung komplexer Systeme

16.12.2004


Wissenschaftler dringen immer weiter in die komplexen Vorgänge der Welt vor; gleichzeitig müssen sie jedoch erkennen, dass etablierte Forschungsmethoden und Theorien nicht ausreichen, um die Zusammenhänge und Abhängigkeiten zwischen den beteiligten Faktoren zu erfassen oder gar vorherzusagen. Das alleinige Studium der "Bausteine" reicht nicht aus, um das gesamte System zu begreifen. So lässt sich beispielsweise aus der Abfolge der Aminosäure-Bausteine eines Proteins noch nicht auf dessen Eigenschaften und Wirkungsweise schließen - hängen diese doch auch von der räumlichen Struktur des Moleküls und den biochemischen Wechselwirkungen ab.



Mit der im November 2003 eingerichteten Förderinitiative "Neue konzeptionelle Ansätze zur Modellierung und Simulation komplexer Systeme" unterstützt die VolkswagenStiftung wissenschaftliche Ansätze, die helfen komplexe Systeme besser zu verstehen. Im Rahmen der ersten Ausschreibung "Computersimulation molekularer und zellulärer Biosysteme sowie komplexer weicher Materie" hat die Stiftung nun rund 3,8 Millionen Euro für 13 Vorhaben bewilligt, darunter:

... mehr zu:
»DNA »Physik »Protein


1.
202.000 Euro für das Vorhaben "Modeling chromatin fibers by Monte Carlo procedures and analytical descriptions" von Privatdozent Dr. Karsten Rippe vom Kirchhoff-Institut für Physik, Molekulare Biophysik der Universität Heidelberg und Professor Dr. Gero Wedemann vom Fachbereich Elektrotechnik und Informatik, System Engineering und Informations¬management der Fachhochschule Stralsund;


2.
323.600 Euro für das Vorhaben "Modelling large protein assemblies: from molecular machines to adhesion clusters" von Professor Dr. Volkhard Helms vom Zentrum für Bioinformatik der Universität des Saarlandes und Dr. Ulrich Schwarz vom Interdisziplinären Zentrum für wissenschaftliches Rechnen der Universität Heidelberg;

3.
199.200 Euro für das Vorhaben "Improved replica-exchange molecular dynamics sampling of conformational sub-states and folding of nucleic acids" von Professor Dr. Martin Zacharias von der School of Engineering and Sciences der International University Bremen (IUB);

4.
187.500 Euro für das Vorhaben "Simulation models for cell motility - coupling substrate adhesion and cytoplasm dynamics" von Professor Dr. Wolfgang Alt vom Botanischen Institut und Botanischen Garten, Abteilung Theoretische Biologie der Universität Bonn.

Weitere Informationen zu den Projekten und eine Übersicht der bewilligten Vorhaben finden Sie auf den Seiten 2 bis 4 der Presseinformation.

Zu 1: Seit Watson und Crick ist bekannt, dass die DNA (Desoxyribonukleinsäure) Trägerin der Erbinformation ist. Die DNA liegt jedoch alles andere als statisch im Zellkern vor. Zu den wichtigsten Proteinen, die sowohl die Struktur und Dynamik der DNA als auch die Aktivität von Genen beeinflussen, gehören die Histone. Diese Proteine - sie bedecken die gesamte DNA - sind wahre Verpackungskünstler. Ihnen gelingt es, die langen DNA-Fäden in die winzigen Zellkerne zu pressen, indem sie sie akribisch ordnen, wickeln, stapeln und damit kräftig komprimieren. Beispielsweise sind in jedem der nur 20 Mikrometer großen Zellkerne menschlicher Zellen zwei Meter Erbinformation enthalten. Der DNA-Histon-Komplex wird als Chromatin bezeichnet, eine sehr dynamische Struktur. Sie ändert sich ganz gezielt, und zwar in Abhängigkeit von Veränderungen an den Histonen. Das wiederum hat einen großen Einfluss auf die Aktivität von Genen und auch auf viele andere zelluläre Prozesse, etwa die Zellteilung. Der Schlüssel zum Chromatin-Design liegt in den Nukleosomen. Dies sind runde Gebilde, die aus jeweils einem Paar vier verschiedener Histone bestehen. Um jeweils ein Nukleosom windet sich die DNA etwa zweieinhalb Mal. Das entstehende Objekt sieht wie ein winziges Jojo aus.

Privatdozent Dr. Karsten Rippe - er leitet derzeit auch eine von der VolkswagenStiftung geförderte Nachwuchsgruppe an der Universität Heidelberg -und Professor Dr. Gero Wedemann wollen nun ein Modell der Chromatinfaser entwickeln, mit dessen Hilfe sich die räumliche Organisation und die dynamischen Eigenschaften des Molekülkomplexes beschreiben lassen. Beides ist von Bedeutung bei der Transkription des Erbguts, der "Übertragung" des genetischen Codes von der DNA auf die RNA (Ribonukleinsäure), die den Zwischenschritt auf dem Weg zum Protein darstellt. Die Wissenschaftler wollen nun lange Faserstränge von 500 und mehr Nukleosomen konstruieren, deren Faltung sie mit Hilfe von Monte-Carlo-Simulationen - einem Verfahren der stochastischen Simulation - untersuchen. Die Simulationen sollen unter anderem Vorhersagen darüber ermöglichen, wie bestimmte biologische Faktoren mit der Faser interagieren müssen, um ihre Funktion auszuüben. Ziel der Wissenschaftler ist es besser zu verstehen, wie die Steuerung der Genaktivität funktioniert. Die VolkswagenStiftung fördert das Vorhaben mit 202.000 Euro.

Kontakt Universität Heidelberg
Kirchhoff-Institut für Physik, Molekulare Biophysik
Privatdozent Dr. Karsten Rippe
Telefon: 0 62 21/54 - 9270
E-Mail: Karsten.Rippe@kip.uni-heidelberg.de

Kontakt Fachhochschule Stralsund
Professor Dr. Gero Wedemann
Telefon: 0 38 31/45 70 51
E-Mail: gero.wedemann@fh-stralsund.de

Zu 2: Im Mittelpunkt des Vorhabens von Professor Dr. Volkard Helms und Dr. Ulrich Schwarz stehen so genannte supramolekulare Komplexe. Dahinter verbergen sich Zusammenschlüsse von Molekülen, deren Größe im Bereich von Nanometern, also Millionstel Millimetern, liegt. Bekannt geworden sind supramolekulare Komplexe in der jüngsten Zeit auch in der Proteomik, einer Forschungsrichtung, die auf die Untersuchung der in einer Zelle oder in einem Lebewesen vorhandenen Proteine abzielt. Ziel der Wissenschaftler ist es nun, die dynamische Bildung und den Zerfall solcher Komplexe zu simulieren. Ihr Forschungsansatz trägt dem Problem Rechnung, dass die an der Bildung und am Zerfall supramolekularer Komplexe beteiligten Prozesse unterschiedliche Zeiträume umfassen, die mit gewöhnlichen molekularen Simulationstechniken nicht gemeinsam darstellbar sind. So bildet sich ein einzelner Protein-Protein-Komplex innerhalb von Nano- bis Mikrosekunden, während die Bildung großer supramolekularer Komplexe Sekunden dauern kann. Helms und Schwarz schlagen nun eine Brücke zwischen verschiedenen Forschungsansätzen, indem sie molekulare Simulationsmethoden mit Methoden aus der statistischen Physik kombinieren. Die Stiftung fördert das Vorhaben mit 323.600 Euro.

Kontakt Universität des Saarlandes
Zentrum für Bioinformatik
Professor Dr. Volkhard Helms
Telefon: 06 81/3 02 - 64165
Fax: 06 81/3 02 - 64180

Kontakt Dr. Ulrich Schwarz
zurzeit noch
Telefon: 03 31/5 67 - 9610
E-Mail: ulrich.schwarz@mpikg.mpg.de

Zu 3: Die Wissenschaft dringt immer tiefer in kleinste Bereiche des Lebens vor, doch es fehlt oft an geeigneten Instrumenten und Methoden, die die notwendige Genauigkeit für erforderliche Untersuchungen aufweisen. Ein Beispiel: Je detaillierter das Wissen um die Feinstruktur von DNA und RNA wird, umso besser lassen sich die Funktion der Nukleinsäuren und deren Wechselwirkungen mit Proteinen verstehen und vorhersagen. Eine gängige Untersuchungsmethode hierfür ist die Molekulardynamik-Simulation. Doch hat diese Methode ihre Grenzen: Der ihr zugängliche Nanosekundenbereich reicht häufig nicht aus, um die Konformationsdynamik - die räumlichen Strukturveränderungen - systematisch zu untersuchen. Denn nicht alle relevanten Zustände lassen sich in diesem Zeitbereich während einer Simulation erfassen. Hier setzt das Vorhaben von Professor Dr. Martin Zacharias an: Sein Ziel ist es, die Molekulardynamik-Simulation zu verbessern, indem er sie mit dem "Replica-Exchange-Verfahren" koppelt, bei der gleich mehrere Kopien einer Simulation gestartet werden. Die neue Methode soll unter anderem helfen, die Fein¬struktur der DNA näher zu bestimmen und Kraftfeldmodelle für Nukleinsäuren zu bewerten. Die VolkswagenStiftung fördert das Projekt mit 199.200 Euro.

Kontakt International
University Bremen (IUB)
School of Engineering and Sciences
Professor Dr. Martin Zacharias
Telefon: 04 21/2 00 - 3541
E-Mail: m.zacharias@iu-bremen.de

Zu 4: Im Mittelpunkt des Vorhabens von Professor Dr. Wolfgang Alt steht die Zellbewegung. Zellbewegung findet sich vielfach im menschlichen Körper. So ist sie wesentliche Voraussetzung für die Embryonalentwicklung, für ein gut funktionierendes Immunsystem oder eine effiziente Wundheilung. Für die Bewegung verantwortlich sind insbesondere zwei Komponenten: die Familie der Integrine - eine Klasse von Proteinen, die für die Anhaftung und für die Kraftübertragung auf die zelluläre Matrix zuständig ist - sowie das Netzwerk aus Aktin-Filamenten mit den an ihnen assoziierten Vernetzungsproteinen. Dieser "aktive" Teil des Zytoplasmas steuert die Zellformdynamik, die Krafterzeugung und die Mechano-Rezeption, also den "Tastsinn" der Zelle. Über die Steuerung und Funktionsweise dieses komplexen biochemischen Systems gibt es bisher nur Hypothesen. Ziel von Professor Alt ist es, Modelle und Simulationstechniken auf verschiedenen Raum- und Zeitskalen zu entwickeln und anzuwenden, durch welche die Dynamik der Integrine und die der Aktin-Filamente gekoppelt betrachtet werden können. Die Ergebnisse sollen Aufschluss darüber geben, welche biophysikalischen Mechanismen und regulatorischen Prozesse die Zellbewegung steuern. Gefördert wird das Projekt mit 187.500 Euro.

Kontakt Universität Bonn
Botanisches Institut und Botanischer Garten
Professor Dr. Wolfgang Alt
Telefon: 02 28/73 - 5577
E-Mail: theobio@uni-bonn.de

Des Weiteren wurden bewilligt:

5.
415.300 Euro für das Vorhaben "Rate theory for driven complex biosystems: stochastic modeling and computer simulations" von Professor Dr. Peter Hänggi vom Institut für Physik der Universität Augsburg und Professor Dr. Lutz Schimansky-Geier vom Institut für Physik der Humboldt-Universität Berlin;

Kontakt Professor Dr. Peter Hänggi
Telefon: 08 21/5 98 - 3249
E-Mail: hanggi@physik.uni-augsburg.de

6.
381.000 Euro für das Vorhaben "Novel simulation methods for electro-hydrodynamics" von Professorin Dr. Friederike Schmid von der Fakultät für Physik, Theoretische Physik der Universität Bielefeld sowie Privat¬dozent Dr. Burkhard Dünweg vom Max-Planck-Institut für Polymer¬forschung in Mainz und Privatdozent Dr. Christian Holm vom Frankfurt Institute for Advanced Studies (FIAS);

Kontakt Professorin Dr. Friederike Schmid
Telefon: 05 21/1 06 - 6191
E-Mail: schmid@physik.uni-bielefeld.de

7.
378.000 Euro für das Vorhaben "Generalized dynamics beyond molecular dynamics: Theory and simulation of collective conformational motions of biological macromolecules" von Privatdozent Dr. Helmut Grubmüller vom Max-Planck-Institut für biophysikalische Chemie in Göttingen und Professor Dr. Jeremy Smith vom Interdisziplinären Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg;

Kontakt Privatdozent Dr. Helmut Grubmüller
Telefon: 05 51/2 01 - 2301
E-Mail: hgrubmu@gwdg.de

8.
378.000 Euro für das Vorhaben "Adaptive multiscale simulation: connecting the quantum to the mesoscopic level" von Professor Dr. Dominik Marx und Dr. Nikos L. Doltsinis vom Lehrstuhl für Theoretische Chemie der Universität Bochum sowie Professor Dr. Kurt Kremer und Dr. Luigi Delle Site vom Max-Planck-Institut für Polymerforschung in Mainz;

Kontakt Professor Dr. Dominik Marx
Telefon: 02 34/3 22 80 83
E-Mail: dominik.marx@theochem.ruhr-uni-bochum.de

9.
390.000 Euro für das Vorhaben "Ab initio multi-reference QM/MM methods for biomolecular simulations" von Professor Dr. Walter Thiel vom Max-Planck-Institut für Kohlenforschung in Mülheim und Professor Dr. Bernd Engels vom Institut für Organische Chemie der Universität Würzburg;

Kontakt Professor Dr. Walter Thiel
Telefon: 02 08/3 06 - 2150
E-Mail: thiel@mpi-muelheim.mpg.de

10.
190.200 Euro für das Vorhaben "Regulatory mechanisms and artifical evolution in cellular fiber systems" von Dr. François Nédélec vom Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg;

Kontakt Dr. François Nédélec
Telefon: 0 62 21/38 73 42
E-Mail: nedelec@embl.de

11.
327.200 Euro für das Vorhaben "New algorithms in charged soft and biological matter" von Privatdozent Dr. Ralf Everaers vom Max-Planck-Institut für Physik komplexer Systeme in Dresden und von Dr. Anthony Maggs, Ecole Supérieure de Physique et de Chimie Industrielles - CNRS, Paris;

Kontakt Pirvatdozent Dr. Ralf Everaers
Telefon: 03 51/8 71 12 06
E-Mail: everaers@mpipks-dresden.mpg.de

12.
207.000 Euro für das Vorhaben "From basic concepts and methods on the structure and function of complex networks to modeling of concrete real world networks" von Professor Dr. Philippe Blanchard von der Fakultät für Physik, Theoretische Physik der Universität Bielefeld;

Kontakt Professor Dr. Philippe Blanchard
Telefon: 05 21/1 06 - 6205
E-Mail: blanchard@physik.uni-bielefeld.de

13.
191.500 Euro für das Vorhaben "Stochastic modeling of the proteasome and its application in cancer therapy" von Dr. Alexei Zaikin vom Institut für Physik der Universität Potsdam.

Kontakt Dr. Alexei Zaikin
zurzeit noch
E-Mail: a.zaikin@ex.ac.uk


Kontakt VolkswagenStiftung
Presse- und Öffentlichkeitsarbeit
Dr. Christian Jung
Telefon: 05 11/83 81 - 380
E-Mail: jung@volkswagenstiftung.de

Kontakt Förderinitiative
VolkswagenStiftung
Dr. Ulrike Bischler
Telefon: 05 11/83 81 - 350
E-Mail: bischler@volkswagenstiftung.de

Dr. Christian Jung | idw

Weitere Berichte zu: DNA Physik Protein

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Innovationspreis 2017 der Deutschen Hochschulmedizin e.V.
24.04.2017 | Deutsche Hochschulmedizin e.V.

nachricht EU-Förderung in Millionenhöhe für Regensburger Wissenschaftler
21.04.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen