Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höchst dotierter Nachwuchspreis der Bundesregierung vergeben

10.09.2004


Forscher aus München erhält höchst dotierten Nachwuchspreis der Bundesregierung. Das Bundesministerium für Bildung und Forschung (BMBF) ermöglicht jungen Forscherinnen und Forschern bereits in einer frühen Karrierephase eigenverantwortlich Spitzenforschung aufzubauen. Einer von acht Nachwuchsforscher, die für den sechsten BioFuture-Preis des BMBF mit einem Preisgeld von im Schnitt 1,5 Millionen Euro vorgeschlagen worden, arbeitet am Klinikum der Universität München: Privatdozent Dr. med. Gunter Hartmann (Jahrgang 1967) ist mit der Forschung um die Beeinflussbarkeit des Immunsystems nun in der Liga der Spitzenforschung.


Um eindringende Krankheitserregern adäquat bekämpfen zu können, muss der Organismus wissen, ob es sich um Bakterien oder Viren handelt. Das Immunsystem bezieht diese Information über eine Gruppe von neuen Rezeptorproteinen, den sogenannten Toll-ähnlichen Rezeptoren. Diese Rezeptoren sind spezialisiert auf die Erkennung von molekularen Fingerabdrücken, über die Bakterien von Viren unterschieden werden können. Während solche Fingerabdrücke von Bakterien, wie beispielsweise Endotoxin, schon seit längerer Zeit bekannt sind, so war bislang völlig unklar, anhand welcher molekularen Fingerabdrücke das Immunsystem die Identität von Viren feststellt. Erst seit kurzem weiß man, dass das Immunsystem bestimmte molekulare Merkmale von viralen Nukleinsäuren als Fingerabdrücke aufspürt. Diese Information wird dann in eine Immunantwort umgesetzt, die sich gezielt gegen Viren richtet. Der Forschungsgruppe des Münchner Mediziners Privatdozent Dr. med. Gunther Hartmann aus der Abteilung für Klinische Pharmakologie, Klinikum der Ludwig-Maximilians-Universität München ist es gelungen, solche Nukleinsäure-Merkmale zu identifizieren. Eines dieser Merkmale ist das sogenannte CpG-Motiv, ein kurzer Abschnitt Nukleinsäure von nur 6 Basen Länge in einer bestimmten Anordnung. Ein kurzes Nukleinsäure-Stückchen von 24 Basen Länge, das dieses CpG-Motiv mehrmals enthält, ist das sogenannte CpG-Oligonukleotid 2006 (auch als CpG 7909 oder ProMuneR). Dieses CpG-Oligonukleotid kann synthetisch in großem Maßstab hergestellt werden und befindet sich derzeit bereits weltweit als neue Therapieform in der klinischen Prüfung.

Seit der Identifizierung des CpG-Motivs haben die Münchner Forscher um Hartmann weitere CpG-haltige Nukleinsäure-Stückchen entwickelt, mit denen es erstmals möglich war, körpereigene Immunzellen zur Produktion von großen Mengen an Interferon zu stimulieren. Dies war bislang nur mit Viren selbst möglich. Interferon (Interferon alpha) wird künstlich hergestellt und ist eines der weltweit umsatzstärksten biologischen Arzneimittel. Interferon wird vor allem für die Therapie der chronischen Virushepatitis, aber auch von bestimmten Krebserkrankungen eingesetzt. Mit den von Hartmann entwickelten Nukleinsäure-Stückchen wird über die Induktion von natürlichem Interferon im Körper hinaus zusätzlich eine geordnete Folge von Immunreaktionen hervorrufen, die sich in ihrer Gesamtheit gezielt gegen den Virus richten. Damit erwarten die Forscher eine wesentliche Verbesserung des Therapieerfolgs gegenüber künstlichem Interferon allein.


Der technische Trick, mit dem die Forscher diese virusartige Stimulation des Immunsystems erreicht haben, ist das Zusammenfügen dieser Nukleinsäure-Stückchen zu sogenannten Nanopartikeln, die die Größe von Viren besitzen, und die allein aus Nukleinsäure bestehen. Diese winzigen Nanopartikel wurden in Zusammenarbeit mit Professor Dr. Wolfgang Heckl (Institut für Geo- und Umweltwissenschaften der Ludwig-Maximilans-Universität und Center of Nanoscience) mit einem Verfahren aus der Nanotechnologie, der sogenannten Raster-Kraft-Mikroskopie, sichtbar gemacht werden. Seit kurzem ist bekannt, dass insgesamt vier Mitglieder aus der Gruppe der Toll-ähnlichen Rezeptoren (TLR), TLR3, TLR7, TLR8 und TLR9, Merkmale von viralen Nukleinsäuren aufspüren. Durch die Verknüpfung von Nukleinsäure-Stückchen, die diese verschiedenen Virus-typischen Fingerabdrücken enthalten, zu Nukleinsäure-Nanopartikeln soll nun die Aktivität dieser neuen Therapeutika weiter gesteigert und für die Therapie von verschiedenen Erkrankungen angepasst werden. Da bislang eine virusartige Stimulation des Immunsystems nicht verfügbar war, diese aber auch für eine erfolgreiche Immuntherapie von Tumoren essenziell ist, hoffen die Münchner Forscher dabei auf Fortschritte nicht nur im Kampf gegen Viruserkrankungen sondern auch gegen Krebs.

Mit diesen Arbeiten nimmt der Münchner Forscher Hartmann auf diesem Forschungsgebiet international eine Spitzenposition ein. Hartmann ist Mitglied im Board of Directors der Oligonucleotide Therapeutics Society mit Sitz in Boston und leitet dort den Bereich Immunstimulation.

Bei Rückfragen steht Ihnen zur Verfügung:

Privatdozent Dr. med. Gunther Hartmann
Leiter Arbeitsgruppe "Therapeutische Oligonukleotide"
Abteilung für Klinische Pharmakologie
Medizinische Klinik Innenstadt, Klinikum der Universität München
Ziemssenstr. 1, 80336 München
Tel: +49-89-5160-2331, Fax: +49-89-5160-4406
e-mail: ghartmann@lrz.uni-muenchen.de

S. Nicole Bongard | idw
Weitere Informationen:
http://www.myots.org

Weitere Berichte zu: Immunsystem Interferon Nukleinsäure Virus

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

nachricht MOLLICool - Mobile thermoelektrische Kühlbandage ausgezeichnet
19.07.2017 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie