Höchst dotierter Nachwuchspreis der Bundesregierung vergeben

Forscher aus München erhält höchst dotierten Nachwuchspreis der Bundesregierung. Das Bundesministerium für Bildung und Forschung (BMBF) ermöglicht jungen Forscherinnen und Forschern bereits in einer frühen Karrierephase eigenverantwortlich Spitzenforschung aufzubauen. Einer von acht Nachwuchsforscher, die für den sechsten BioFuture-Preis des BMBF mit einem Preisgeld von im Schnitt 1,5 Millionen Euro vorgeschlagen worden, arbeitet am Klinikum der Universität München: Privatdozent Dr. med. Gunter Hartmann (Jahrgang 1967) ist mit der Forschung um die Beeinflussbarkeit des Immunsystems nun in der Liga der Spitzenforschung.

Um eindringende Krankheitserregern adäquat bekämpfen zu können, muss der Organismus wissen, ob es sich um Bakterien oder Viren handelt. Das Immunsystem bezieht diese Information über eine Gruppe von neuen Rezeptorproteinen, den sogenannten Toll-ähnlichen Rezeptoren. Diese Rezeptoren sind spezialisiert auf die Erkennung von molekularen Fingerabdrücken, über die Bakterien von Viren unterschieden werden können. Während solche Fingerabdrücke von Bakterien, wie beispielsweise Endotoxin, schon seit längerer Zeit bekannt sind, so war bislang völlig unklar, anhand welcher molekularen Fingerabdrücke das Immunsystem die Identität von Viren feststellt. Erst seit kurzem weiß man, dass das Immunsystem bestimmte molekulare Merkmale von viralen Nukleinsäuren als Fingerabdrücke aufspürt. Diese Information wird dann in eine Immunantwort umgesetzt, die sich gezielt gegen Viren richtet. Der Forschungsgruppe des Münchner Mediziners Privatdozent Dr. med. Gunther Hartmann aus der Abteilung für Klinische Pharmakologie, Klinikum der Ludwig-Maximilians-Universität München ist es gelungen, solche Nukleinsäure-Merkmale zu identifizieren. Eines dieser Merkmale ist das sogenannte CpG-Motiv, ein kurzer Abschnitt Nukleinsäure von nur 6 Basen Länge in einer bestimmten Anordnung. Ein kurzes Nukleinsäure-Stückchen von 24 Basen Länge, das dieses CpG-Motiv mehrmals enthält, ist das sogenannte CpG-Oligonukleotid 2006 (auch als CpG 7909 oder ProMuneR). Dieses CpG-Oligonukleotid kann synthetisch in großem Maßstab hergestellt werden und befindet sich derzeit bereits weltweit als neue Therapieform in der klinischen Prüfung.

Seit der Identifizierung des CpG-Motivs haben die Münchner Forscher um Hartmann weitere CpG-haltige Nukleinsäure-Stückchen entwickelt, mit denen es erstmals möglich war, körpereigene Immunzellen zur Produktion von großen Mengen an Interferon zu stimulieren. Dies war bislang nur mit Viren selbst möglich. Interferon (Interferon alpha) wird künstlich hergestellt und ist eines der weltweit umsatzstärksten biologischen Arzneimittel. Interferon wird vor allem für die Therapie der chronischen Virushepatitis, aber auch von bestimmten Krebserkrankungen eingesetzt. Mit den von Hartmann entwickelten Nukleinsäure-Stückchen wird über die Induktion von natürlichem Interferon im Körper hinaus zusätzlich eine geordnete Folge von Immunreaktionen hervorrufen, die sich in ihrer Gesamtheit gezielt gegen den Virus richten. Damit erwarten die Forscher eine wesentliche Verbesserung des Therapieerfolgs gegenüber künstlichem Interferon allein.

Der technische Trick, mit dem die Forscher diese virusartige Stimulation des Immunsystems erreicht haben, ist das Zusammenfügen dieser Nukleinsäure-Stückchen zu sogenannten Nanopartikeln, die die Größe von Viren besitzen, und die allein aus Nukleinsäure bestehen. Diese winzigen Nanopartikel wurden in Zusammenarbeit mit Professor Dr. Wolfgang Heckl (Institut für Geo- und Umweltwissenschaften der Ludwig-Maximilans-Universität und Center of Nanoscience) mit einem Verfahren aus der Nanotechnologie, der sogenannten Raster-Kraft-Mikroskopie, sichtbar gemacht werden. Seit kurzem ist bekannt, dass insgesamt vier Mitglieder aus der Gruppe der Toll-ähnlichen Rezeptoren (TLR), TLR3, TLR7, TLR8 und TLR9, Merkmale von viralen Nukleinsäuren aufspüren. Durch die Verknüpfung von Nukleinsäure-Stückchen, die diese verschiedenen Virus-typischen Fingerabdrücken enthalten, zu Nukleinsäure-Nanopartikeln soll nun die Aktivität dieser neuen Therapeutika weiter gesteigert und für die Therapie von verschiedenen Erkrankungen angepasst werden. Da bislang eine virusartige Stimulation des Immunsystems nicht verfügbar war, diese aber auch für eine erfolgreiche Immuntherapie von Tumoren essenziell ist, hoffen die Münchner Forscher dabei auf Fortschritte nicht nur im Kampf gegen Viruserkrankungen sondern auch gegen Krebs.

Mit diesen Arbeiten nimmt der Münchner Forscher Hartmann auf diesem Forschungsgebiet international eine Spitzenposition ein. Hartmann ist Mitglied im Board of Directors der Oligonucleotide Therapeutics Society mit Sitz in Boston und leitet dort den Bereich Immunstimulation.

Bei Rückfragen steht Ihnen zur Verfügung:

Privatdozent Dr. med. Gunther Hartmann
Leiter Arbeitsgruppe „Therapeutische Oligonukleotide“
Abteilung für Klinische Pharmakologie
Medizinische Klinik Innenstadt, Klinikum der Universität München
Ziemssenstr. 1, 80336 München
Tel: +49-89-5160-2331, Fax: +49-89-5160-4406
e-mail: ghartmann@lrz.uni-muenchen.de

Media Contact

S. Nicole Bongard idw

Weitere Informationen:

http://www.myots.org

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer