Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höchst dotierter Nachwuchspreis der Bundesregierung vergeben

10.09.2004


Forscher aus München erhält höchst dotierten Nachwuchspreis der Bundesregierung. Das Bundesministerium für Bildung und Forschung (BMBF) ermöglicht jungen Forscherinnen und Forschern bereits in einer frühen Karrierephase eigenverantwortlich Spitzenforschung aufzubauen. Einer von acht Nachwuchsforscher, die für den sechsten BioFuture-Preis des BMBF mit einem Preisgeld von im Schnitt 1,5 Millionen Euro vorgeschlagen worden, arbeitet am Klinikum der Universität München: Privatdozent Dr. med. Gunter Hartmann (Jahrgang 1967) ist mit der Forschung um die Beeinflussbarkeit des Immunsystems nun in der Liga der Spitzenforschung.


Um eindringende Krankheitserregern adäquat bekämpfen zu können, muss der Organismus wissen, ob es sich um Bakterien oder Viren handelt. Das Immunsystem bezieht diese Information über eine Gruppe von neuen Rezeptorproteinen, den sogenannten Toll-ähnlichen Rezeptoren. Diese Rezeptoren sind spezialisiert auf die Erkennung von molekularen Fingerabdrücken, über die Bakterien von Viren unterschieden werden können. Während solche Fingerabdrücke von Bakterien, wie beispielsweise Endotoxin, schon seit längerer Zeit bekannt sind, so war bislang völlig unklar, anhand welcher molekularen Fingerabdrücke das Immunsystem die Identität von Viren feststellt. Erst seit kurzem weiß man, dass das Immunsystem bestimmte molekulare Merkmale von viralen Nukleinsäuren als Fingerabdrücke aufspürt. Diese Information wird dann in eine Immunantwort umgesetzt, die sich gezielt gegen Viren richtet. Der Forschungsgruppe des Münchner Mediziners Privatdozent Dr. med. Gunther Hartmann aus der Abteilung für Klinische Pharmakologie, Klinikum der Ludwig-Maximilians-Universität München ist es gelungen, solche Nukleinsäure-Merkmale zu identifizieren. Eines dieser Merkmale ist das sogenannte CpG-Motiv, ein kurzer Abschnitt Nukleinsäure von nur 6 Basen Länge in einer bestimmten Anordnung. Ein kurzes Nukleinsäure-Stückchen von 24 Basen Länge, das dieses CpG-Motiv mehrmals enthält, ist das sogenannte CpG-Oligonukleotid 2006 (auch als CpG 7909 oder ProMuneR). Dieses CpG-Oligonukleotid kann synthetisch in großem Maßstab hergestellt werden und befindet sich derzeit bereits weltweit als neue Therapieform in der klinischen Prüfung.

Seit der Identifizierung des CpG-Motivs haben die Münchner Forscher um Hartmann weitere CpG-haltige Nukleinsäure-Stückchen entwickelt, mit denen es erstmals möglich war, körpereigene Immunzellen zur Produktion von großen Mengen an Interferon zu stimulieren. Dies war bislang nur mit Viren selbst möglich. Interferon (Interferon alpha) wird künstlich hergestellt und ist eines der weltweit umsatzstärksten biologischen Arzneimittel. Interferon wird vor allem für die Therapie der chronischen Virushepatitis, aber auch von bestimmten Krebserkrankungen eingesetzt. Mit den von Hartmann entwickelten Nukleinsäure-Stückchen wird über die Induktion von natürlichem Interferon im Körper hinaus zusätzlich eine geordnete Folge von Immunreaktionen hervorrufen, die sich in ihrer Gesamtheit gezielt gegen den Virus richten. Damit erwarten die Forscher eine wesentliche Verbesserung des Therapieerfolgs gegenüber künstlichem Interferon allein.


Der technische Trick, mit dem die Forscher diese virusartige Stimulation des Immunsystems erreicht haben, ist das Zusammenfügen dieser Nukleinsäure-Stückchen zu sogenannten Nanopartikeln, die die Größe von Viren besitzen, und die allein aus Nukleinsäure bestehen. Diese winzigen Nanopartikel wurden in Zusammenarbeit mit Professor Dr. Wolfgang Heckl (Institut für Geo- und Umweltwissenschaften der Ludwig-Maximilans-Universität und Center of Nanoscience) mit einem Verfahren aus der Nanotechnologie, der sogenannten Raster-Kraft-Mikroskopie, sichtbar gemacht werden. Seit kurzem ist bekannt, dass insgesamt vier Mitglieder aus der Gruppe der Toll-ähnlichen Rezeptoren (TLR), TLR3, TLR7, TLR8 und TLR9, Merkmale von viralen Nukleinsäuren aufspüren. Durch die Verknüpfung von Nukleinsäure-Stückchen, die diese verschiedenen Virus-typischen Fingerabdrücken enthalten, zu Nukleinsäure-Nanopartikeln soll nun die Aktivität dieser neuen Therapeutika weiter gesteigert und für die Therapie von verschiedenen Erkrankungen angepasst werden. Da bislang eine virusartige Stimulation des Immunsystems nicht verfügbar war, diese aber auch für eine erfolgreiche Immuntherapie von Tumoren essenziell ist, hoffen die Münchner Forscher dabei auf Fortschritte nicht nur im Kampf gegen Viruserkrankungen sondern auch gegen Krebs.

Mit diesen Arbeiten nimmt der Münchner Forscher Hartmann auf diesem Forschungsgebiet international eine Spitzenposition ein. Hartmann ist Mitglied im Board of Directors der Oligonucleotide Therapeutics Society mit Sitz in Boston und leitet dort den Bereich Immunstimulation.

Bei Rückfragen steht Ihnen zur Verfügung:

Privatdozent Dr. med. Gunther Hartmann
Leiter Arbeitsgruppe "Therapeutische Oligonukleotide"
Abteilung für Klinische Pharmakologie
Medizinische Klinik Innenstadt, Klinikum der Universität München
Ziemssenstr. 1, 80336 München
Tel: +49-89-5160-2331, Fax: +49-89-5160-4406
e-mail: ghartmann@lrz.uni-muenchen.de

S. Nicole Bongard | idw
Weitere Informationen:
http://www.myots.org

Weitere Berichte zu: Immunsystem Interferon Nukleinsäure Virus

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie