Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Große Schritte in die Nanowelt - Erwin Schrödinger-Preis geht an Karlsruher Forscherteam

10.08.2004


Der Erwin Schrödinger-Preis für interdisziplinäre Forschung wird in diesem Jahr von der Helmholtz-Gemeinschaft deutscher Forschungszentren an ein Forscherteam aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe vergeben. Damit zeichnet die Jury das Team aus Physikern und Chemikern für seine exzellenten interdisziplinären Leistungen in der Nanotechnologie aus.

... mehr zu:
»Molekül »Nanotechnologie

Professor Walter Kröll, Präsident der Helmholtz-Gemeinschaft, wird den mit 50.000 Euro dotierten Preis anlässlich der Jahrestagung der Helmholtz-Gemeinschaft am 7. Dezember 2004 im Concert Noble in Brüssel an die Forschergruppe übergeben.

Zwei bahnbrechende Arbeiten machten das Karlsruher Team, Frank Hennrich, Ralph Krupke, Marcel Mayor und Heiko Weber, unter Fachkollegen in den letzten Jahren weltweit bekannt: Sie entwickelten ein seit langer Zeit gesuchtes Verfahren zur Trennung von winzigen Kohlenstoffröhrchen, die in der Nanotechnologie eine wichtige Rolle spielen. Und: Es gelang ihnen, den elektrischen Strom durch einzelne organische Moleküle zu vermessen. Durch systematische Zusammenarbeit hat das Karlsruher Team damit zwei grundsätzliche Probleme gelöst, die das gesamte Arbeitsgebiet der Nanotechnologie betreffen. Zusammen ebnen ihre Arbeiten den Weg zu einer künftigen Nanoelektronik, bei der winzige Schaltkreise in der Größe von Millionstel Millimetern gebaut werden könnten. Dieser Elektronik im kleinsten Maßstab wird etwa in der Computer-, Satelliten- oder Medizintechnik eine wichtige Rolle vorausgesagt. Sie würde es ermöglichen, winzige Chips zu bauen und damit die Rechenleistung auf kleinstem Raum entscheidend zu verbessern. Die Kohlenstoffröhrchen der Karlsruher könnten dabei als "Drähte" fungieren und die organischen Moleküle als Speichermedien dienen.

Kleiner geht nicht

Der Erwin Schrödinger-Preis wird jährlich als Auszeichnung für herausragende wissenschaftliche oder technisch innovative Leistungen vergeben, die in Grenzgebieten zwischen verschieden Fächern unter Beteiligung von Helmholtz-Wissenschaftlern geleistet werden. "Den diesjährigen Preisträgern ist auf einzigartige Weise gelungen, interdisziplinär zusammenzuarbeiten und die Bereiche Chemie und Physik auf einem innovativen Forschungsgebiet fruchtbar miteinander zu verbinden", erklärt Prof. Karin Mölling, Vorsitzende der Jury. "Dort wo physikalische Bauteile immer kleiner und chemische Moleküle immer größer werden, treffen sich die Physik und die Chemie ", so die Physikerin und Direktorin des Instituts für Medizinische Virologie an der Universität Zürich. "An dieser Grenze befindet sich die Nanotechnologie: Schaltungen werden da auf molekularer Ebene gebaut. Kleiner geht es nicht mehr!"

"Makkaroni" aus Kohlenstoffatomen

Bereits 1991 entdeckten japanische Forscher, dass sich Kohlenstoffatome zu winzigen Röhrchen formen können, deren Wände nur eine Atomlage dick sind. Seitdem sind "Nanoröhren" zu einem der wichtigsten Forschungsobjekte der Nanotechnologie geworden. Insbesondere in der molekularen Elektronik galten sie schon früh als Grundbausteine elektronischer Bauteile. Bisher jedoch gab es eine Schwierigkeit: Bei der Herstellung entsteht immer ein Gemisch aus zwei Typen von Nanoröhren mit unterschiedlichen elektrischen Eigenschaften. Je nach Anordnung der Atome in den Wänden der Röhrchen verhalten sich die "Kohlenstoffmakkaroni" entweder wie Metalle oder wie Halbleiter. Erst die Arbeiten des Karlsruher Forscherteams ermöglichen es jetzt, die halbleitenden und metallischen Röhrchen in einer Lösung voneinander zu trennen und so zu sortieren. "In einem elektrischen Wechselfeld mit einer Frequenz von 10 Millionen Hertz wandern die metallischen und die halbleitenden Nanoröhren in entgegengesetzte Richtungen. Damit können die metallischen Röhrchen abgeschieden werden. Die nichtmetallischen verbleiben in der Lösung", erklärt der Physiker Dr. Ralph Krupke. Gemeinsam mit dem Chemiker Dr. Frank Hennrich konnte er das Problem in einem fachübergreifenden Ansatz lösen.

Moleküle unter Strom

Für elektrische Schaltungen im Nanomaßstab braucht man aber außer winzigen Drähten weitere Bauteile. Die Halbleiteringenieure schafften es zwar in den vergangenen 20 Jahren, immer höher integrierte elektronische Schaltungen aus Silizium herzustellen, wobei die Abmessungen der einzelnen Bauteile immer winziger wurden. Vermutlich werden sie in den nächsten Jahren sogar auf wenige Nanometer schrumpfen. Damit aber erreicht die Verkleinerung endgültig physikalische Grenzen.

Einen Ausweg scheint die elektronische Verschaltung von Molekülen zu bieten. Für solche molekularen Schaltkreise muss man einzelne Moleküle elektrisch kontaktieren können. Außerdem benötigt man Moleküle, deren Leitungsmechanismus vorhersagbar ist. Den Karlsruher Forschern gelang hier ein Durchbruch: Denn sie schafften es, einzelne Moleküle zwischen zwei Elektroden einzuspannen und den Strom durch diese Moleküle zu messen. "Zum Nachweis haben wir symmetrische und asymmetrische Moleküle hergestellt und kontaktiert", erläutert Dr. Marcel Mayor, der mit Dr. Heiko Weber in interdisziplinärer Chemie-Physik-Partnerschaft gearbeitet hat. Auf diese Weise gewannen die Wissenschaftler eine für die molekulare Elektronik entscheidenden Erkenntnis: Durch geeignete Wahl der molekularen Struktur können die elektronischen Eigenschaften der "Bauteile" tatsächlich festgelegt werden. Zwar war die Idee, einzelne Moleküle als elektronische Bauteile einzusetzen, nicht neu. Erstmals wurden aber die elektronischen Transportprozesse in den Molekülen umfassend vermessen und verstanden.

Die Helmholtz-Gemeinschaft ist mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,2 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Die 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft erbringen wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie, Verkehr und Weltraum. Die Helmholtz-Gemeinschaft identifiziert und bearbeitet große und drängende Fragen von Gesellschaft, Wissenschaft und Wirtschaft, insbesondere durch die Erforschung von Systemen hoher Komplexität.

Dr. Ellen Peerenboom | idw
Weitere Informationen:
http://www.helmholtz.de

Weitere Berichte zu: Molekül Nanotechnologie

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie