Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Karlsruher Forscher entdecken bislang unbekannte magnetische Ordnung

08.07.2004


Heidelberger Akademie der Wissenschaften verleiht Akademiepreis 2004 an Dr. Christian Pfleiderer - "Vielleicht haben wir gleichzeitig auch eine neue Klasse von Metallen gefunden!", so Christian Pfleiderer


Am kommenden Samstag verleiht die Heidelberger Akademie der Wissenschaften Dr. Christian Pfleiderer den Akademiepreis 2004. Dem Physiker ist es gemeinsam mit einem Forscherteam von der Universität Karlsruhe und dem Forschungszentrum Karlsruhe gelungen, eine bislang unbekannte magnetische Ordnungsstruktur zu entdecken. Seit ihrer Entstehung als wissenschaftliche Disziplin im 19. Jahrhundert kennt die Festkörperphysik drei magnetische Ordnungszustände. "Wir können uns diese ganz grob gesprochen so vorstellen: Im ’ungeordneten Zustand’ weisen die magnetischen Momente in rascher Folge in alle möglichen Richtungen", erklärt Pfleiderer. "Sind sie ’langreichweitig angeordnet’ deuten sie in bestimmte Richtungen, sind sie ’glasartig’, so sind sie in alle möglichen Richtungen eingefroren." Dass es nun noch eine vierte Form der Ordnung geben soll, versetzt die Fachwelt in Erstaunen.

In der Januarausgabe der Zeitschrift "Nature" (Band 427) berichteten Pfleiderer und Kollegen über die Entstehung dieses neuen Zustandes. Bei Temperaturen nahe dem absoluten Nullpunkt und bei Drücken oberhalb von 15.000 Atmosphären zeigte das Metall Mangansilizium (MnSi) ungewöhnliche Eigenschaften. Die langreichweitige spiralförmige Anordnung der magnetischen Momente löst sich nur zum Teil auf. Die Spirale bleibt erhalten, aber die Richtung der magnetischen Spirale ist in diesem neuen Zustand nicht mehr eindeutig festgelegt. Der neue Zustand ähnelt dabei Flüssigkristallen, die sich ebenfalls in einem Zwitterzustand befinden: sie sind gleichzeitig kristallin und geschmolzen. Seit der Veröffentlichung dieser Forschungsergebnisse erfährt Pfleiderer aus Fachkreisen eine enorme Resonanz: "Ich kann mich gegenwärtig vor Einladungen auf Kongresse nicht mehr retten." Bereits im Jahr 2001 wies Pfleiderer mit einem anderen Team in "Nature" darauf hin, dass die statistischen Eigenschaften der Ladungsträger im magnetischen Metall Mangansilizium unter den von ihnen erzeugten Bedingungen vollkommen unkonventionell sind. "Wir spekulieren gegenwärtig, ob die von uns entdeckte magnetische Ordnung das Kennzeichen einer ganz neuen Klasse von Metallen ist."


14 Jahre forscht Pfleiderer, zunächst an der Universität Cambridge und dem Forschungszentrum Grenoble, nun schon auf diesem Themengebiet. Dabei wird er mittlerweile von drei Mitarbeitern unterstützt. "Es handelt sich hier um reine Grundlagenforschung", so betont er. Eine praktische Nutzung der gewonnenen Ergebnisse steht nicht im Vordergrund. Auch die technische Nutzung von Flüssigkristallen für High-Tech-Displays benötigte schließlich rund 100 Jahre von ihrer Entdeckung bis zur Marktreife. "Wenn ich jedoch spekulieren darf, so könnte unsere Forschung eines Tages neue Speichermedien in der Informationstechnik ermöglichen. Diese würden auf einer Nanoskala um ein Vielfaches höhere Speicherkapazitäten bieten als alles, was uns gegenwärtig machbar erscheint. Aber das ist im Augenblick noch ferne Zukunftsmusik."

In die nähere Zukunft sieht Pfleiderer mit viel Optimismus. Bislang war er bei seinen Experimenten auf Forschungsreaktoren in Paris und Berlin angewiesen. Doch seit Juni 2004 steht der neue Forschungsreaktor München II (FRM II) zur Verfügung. "Dank dieser international hervorragenden Einrichtung werden bei der Erforschung magnetischer Strukturen mit Neutronen neue Perspektiven möglich. Wir haben gute Chancen, die von uns entdeckte magnetische Ordnung nicht nur strukturell, sondern auch in ihrer Dynamik zu begreifen!" Die Helmholtzgemeinschaft Deutscher Forschungszentren und das Forschungszentrum Karlsruhe wird deshalb eine eigene Nachwuchsgruppe unter Leitung von Pfleiderer an der Universität Karlsruhe einrichten.

Der Akademiepreis wird von der Heidelberger Akademie der Wissenschaften jährlich für die herausragende Arbeit eines Jungforschers verliehen. Der mit 6.000 Euro dotierte Preis wurde 1984 vom Verein zur Förderung der Heidelberger Akademie der Wissenschaften gestiftet. "Mit der Verleihung dieses Preises anerkennt die Akademie die Leistung junger Forscher und will sie so ausdrücklich ermutigen. Sie möchte ihnen ihr eigenes Prestige zugute kommen lassen, um in der Öffentlichkeit auf den Wert der geleisteten Forschungsarbeit hinzuweisen," so Professor Graf Kielmansegg, Präsident der Heidelberger Akademie der Wissenschaften.

Ort: Heidelberger Akademie der Wissenschaften, Karlstraße 4, 69117 Heidelberg
Datum: Samstag 10. Juli 2004
Uhrzeit: 12.15 Uhr
Der Eintritt ist kostenlos.

Rückfragen bitte an

Dr. Johannes Schnurr
Referent für Presse- und Öffentlichkeitsarbeit
der Heidelberger Akademie der Wissenschaften
Telefon: 06221/54 34 00
Fax: 06221/54 33 55
E-Mail: johannes.schnurr@urz.uni-heidelberg.de

sowie

Dr. Christian Pfleiderer
Telefon: 0721/6 08 35 40
E-Mail: christian.pfleiderer@pi.uka.de

Dr. Johannes Schnurr | idw
Weitere Informationen:
http://www.haw.baden-wuerttemberg.de

Weitere Berichte zu: Flüssigkristall Forschungsreaktor Metall

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

nachricht 1,5 Mio. Euro für das Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW)
05.12.2016 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik