Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Laserklasse mit Transferpreis WissensWerte 2004 ausgezeichnet

21.06.2004


Das winzige graue Kästlein auf dem Sockel ist der neue Diodenlaser aus dem FBH. Foto: FBH/Schurian.com


Skizze des Diodenlasers. Ab.: FBH/Schurian.com


Transferpreis WissensWerte 2004 geht an Forscher des Ferdinand-Braun-Instituts für Höchstfrequenztechnik

... mehr zu:
»DFB-Laser »Diodenlaser »FBH »Wellenlänge

Das Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH) in Berlin-Adlershof wird am heutigen Montag, 21. Juni, mit dem Transferpreis WissensWerte 2004 des TSB Fördervereins Technologiestiftung Berlin e.V. ausgezeichnet. Der Preis würdigt die Forschungsleistung bei der Neuentwicklung hochbrillanter Diodenlaser und geht an die Wissenschaftler Dr. Götz Erbert, Dr. Andreas Klehr, Dr. Bernd Sumpf und Dr. Hans Wenzel. Die so genannten Distributed-Feedback-Laser (DFB-Laser) sind spektral extrem schmalbandig. Sie zeichnen sich durch eine hohe Strahlqualität, stabile Wellenlänge und gleichzeitig hohe Ausgangsleistung aus. Außerdem stehen mit den neuen hochbrillanten DFB-Lasern sehr viel kostengünstigere Laserquellen als bisher zur Verfügung, die in großer Stückzahl produziert werden können.

Bereits heute werden die neuen DFB-Laser international erfolgreich vermarktet. Die Ausgründung des FBH, eagleyard Photonics GmbH, hat seit Januar 2004 namhafte Kunden in Europa, Japan und den USA für die leistungsstarken Diodenlaser gewonnen.


Die Innovation aus dem FBH wurde unter insgesamt 38 wissenschaftlichen Arbeiten aus Berlin und Brandenburg ausgewählt. Der mit 10.000 Euro dotierte Preis wird dieses Jahr zum zweiten Mal für eine wissenschaftliche Entwicklung mit hohem Innnovationspotenzial und großen Realisierungschancen verliehen. Eine Verwendung für das Preisgeld ist bereits gefunden. "Wir möchten mit dem Geld etwas Nachhaltiges schaffen und in die Zukunft investieren, daher haben wir uns entschieden, gemeinsam mit eagleyard einen zusätzlichen Mikrotechnologen auszubilden", erläutert Prof. Günther Tränkle, Direktor des Ferdinand-Braun-Instituts.

Details zu den neuen Diodenlasern

Bisher gab es im Wesentlichen zwei Klassen von Diodenlasern. Die einen sind hochbrillant - das heißt, sie strahlen in einem genau definierbaren Wellenlängenbereich mit hoher Strahlqualität -, haben aber eine geringe Ausgangsleistung von nur einigen tausendstel Watt (mW). Die anderen haben weitaus mehr "Power" (einige Watt), besitzen jedoch eine weit geringere Strahlqualität und spektrale Bandbreite. Der DFB-Laser aus dem Adlershofer Ferdinand-Braun-Institut erreicht nun eine Leistung von mehr als 0,4 Watt. Zum Vergleich: Laser in CD-Playern haben eine Leistung von 0,002 bis 0,005 Watt, also einige mW. Der DFB-Laser weist überdies eine enorme Brillanz auf. Dies ist entscheidend für Anwendungen in der Telekommunikation, aber auch in der Materialanalyse. Weitere Einsatzmöglichkeiten liegen in der Spektroskopie, Messtechnik, Sensorik und Atomphysik.

Patentierte Schichttechnologie

Die Ausgangsleistung und die Brillanz konnten erhöht werden, weil es im FBH gelang, periodische Strukturen mit zirka 200 Nanometer Länge, so genannte Bragg-Gitter, in Hochleistungsdiodenlaser zu integrieren. Ein solches Gitter sieht aus wie Ackerfurchen. Unvorstellbar kleine Furchen freilich: zweihundert Furchen nebeneinander sind nur so breit wie der Durchmesser eines einzigen Haares. Die neue Technologie beruht auf dem exakt definierten kristallinen Schichtwachstum unterschiedlicher Kristallmaterialien im Nanometer-Bereich. In diese Schichten wird das Bragg-Gitter geätzt und in einem zweiten Schritt überwachsen - wie eine Schneedecke, die die Furchen bedeckt. Genau dieser zweite Schritt konnte durch die neuen Schichtstrukturen so gut ausgeführt werden, dass die hohen Leistungen auch mit großer Zuverlässigkeit möglich sind. Das weltweit einzigartige Verfahren wurde im Januar 2001 zum Patent angemeldet.

Der neue Laser erzeugt brillantes Licht mit gleichsam fein justierbaren Wellenlängen von 760 bis 980 Nanometer (rotes bis infrarotes Licht). Die Unschärfe der Wellenlänge (Linienbreite) des Lichts dieser Diodenlaser ist so gering, dass die Wellenlänge auf 7 Stellen hinter dem Komma angegeben werden kann. Wenn die Schwankungen der Stromversorgung und die Umgebungstemperatur hinreichend gering sind, ist es sogar möglich, diese Unschärfe um weitere zwei Kommastellen zu verringern.

Das FBH
Das Ferdinand-Braun-Institut für Höchstfrequenztechnik ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Auf der Basis von III/V-Verbindungshalbleitern realisiert es Hochfrequenz-Bauelemente und Schaltungen für Anwendungen in der Kommunikationstechnik und Sensorik sowie hochbrillante Diodenlaser für die Materialbearbeitung, Lasertechnologie, Medizintechnik und Präzisionsmesstechnik. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt 150 Mitarbeiter und hat einen Etat von 14 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. (FVB) und ist Mitglied der Leibniz-Gemeinschaft.

Der Forschungsverbund Berlin
Im Forschungsverbund Berlin (FVB) sind acht natur-, umwelt- und lebenswissenschaftlich orientierte Institute zusammengeschlossen, die wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz-Gemeinschaft.

Über eagleyard Photonics
Die 2002 neu gegründete Firma eagleyard Photonics GmbH ist ein hoch innovatives Unternehmen mit einem rasanten Wachstum auf dem Gebiet der Optischen Technologien. Sie ist Entwickler und Hersteller von Hochleistungslaserdioden mit Wellenlängen von 730nm bis 1120nm für medizinische, wissenschaftliche und industrielle Anwendungsbereiche. Das Portfolio umfasst single mode laser, Breitstreifenlaser, ridge waveguide laser, tapered laser, DFB und DBR Laser.

Petra Immerz, M.A. | idw
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Berichte zu: DFB-Laser Diodenlaser FBH Wellenlänge

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics