Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften"

23.04.2004


VolkswagenStiftung bewilligt rund 3,35 Millionen Euro für sieben neue Vorhaben in den Materialwissenschaften


Materialien nehmen eine Schlüsselrolle bei der Entwicklung neuer Technologien ein. Von neuen Materialien erhofft man sich unter anderem Miniaturisierung, Gewichtsminderung, bessere Umwelt- und Bioverträglichkeit oder auch geringeren Rohstoff- und Energieverbrauch - und dies bei gleichzeitig optimierten strukturellen und funktionellen Eigenschaften. Mit ihrer Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" will die VolkswagenStiftung Wissenschaftler anregen, die traditionellen Grenzen der Werkstoffdisziplinen zu überschreiten und von Erkenntnissen und Erfahrungen anderer Gebiete einschließlich der Biowissenschaften zu profitieren. Für sieben neue Vorhaben in dieser Initiative - drei stellen wir im Folgenden kurz vor - bewilligte die Stiftung jetzt rund 3,35 Millionen Euro:

Gefördert werden unter anderem zwei Projekte zu so genannten Drug-Carrier-Systemen:


1. 683.000 Euro für das Vorhaben "Block copolymer vesicles with controlled uptake/release functions for drugs and genes" von Professor Dr. Stephan Förster vom Institut für Physikalische Chemie der Universität Hamburg, Professor Dr. Dr. h. c. Markus Antonietti vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam, Professor Dr. Christian Mayer vom Institut für Chemie der Universität Duisburg-Essen - sowie Professor Dr. Rolf Schubert und Privatdozentin Dr. Regine Peschka-Süss vom Institut für Pharmazeutische Wissenschaften, Lehrstuhl für Pharmazeutische Technologie der Universität Freiburg;


2. 695.600 Euro für das Vorhaben "Nanoengineered polymer capsules: tools for detection, controlled delivery and site specific manipulation" von Dr. Gleb Sukhorukov vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam, Dr. Andrey Rogach und Dr. Wolfgang J. Parak vom Center for Nanoscience (CeNS) der Universität München - sowie Professor Dr. Mathias Winterhalter, School of Engineering and Science der International University Bremen.

Drug-Carrier-Systeme, der Name sagt es schon, sind Transportsysteme, mit denen sich etwa Medikamente gezielt an erkrankte Regionen im Körper transportieren lassen - bis hinein in die einzelne Zelle. Dort werden die Substanzen dann freigesetzt. Je nach verfolgter Strategie bestehen diese Systeme aus unterschiedlichen Materialien. Bei Vorhaben Nr. 1 (Hamburg-Potsdam-Duisburg-Freiburg) ist es das Ziel der Wissenschaftler, neuartige Polymervesikel als vielseitige Trägersysteme zu entwickeln. Mit deren Hilfe sollen sowohl Wirkstoffe als auch Gene in Zellen kontrolliert freigesetzt werden. Die Polymervesikel entstehen durch Selbstorganisation. Das Vorhaben zeichnet sich dadurch aus, dass die Forscher Antworten auf die wesentlichen offenen Schlüsselfragen im Bereich der nicht-viralen Drug-Carrier-Systeme finden wollen. Geplant sind Untersuchungen zu DNS-Bindung und Einkapselung, Vesikelgrößenverteilung und Stabilität, Biokompatibilität - ferner zur Anbindung von Rezeptoren hinsichtlich deren Auswirkung auf die Effizienz des Gentransfers in verschiedene Zelllinien. Zum Einsatz kommen dabei eine Reihe von Methoden wie die Licht-, Neutronen- und Röntgenstreuung, optische, Fluoreszenz- und Kryo-Elektronen­mikroskopie - sowie neu entwickelte NMR- und Membranseparationsmethoden zur physiko-chemischen Charakterisierung der Vesikel-DNS-Konjugate.

Kontakte zu Projekt 1:
Professor Dr. Stephan Förster
Telefon: 0 40/4 28 38 - 3460
E-Mail: forster@chemie.uni-hamburg.de

Professor Dr. Dr. h. c. Markus Antonietti
Telefon: 03 31/5 67 - 9501
E-Mail: pape@mpikg-golm.mpg.de

Professor Dr. Christian Mayer
Telefon: 02 03/3 79 - 3317
E-Mail: hi408ma@uni-duisburg.de

Professor Dr. Rolf Schubert
Telefon: 07 61/2 03 - 6336
E-Mail: rolf.schubert@pharmazie.uni-freiburg.de

Privatdozentin Dr. Regine Peschka-Süss
Telefon: 07 61/2 03 - 6327
E-Mail: regine.peschka-suess@pharmazie.uni-freiburg.de

Die Wissenschaftler des zweiten Vorhabens in diesem Themenfeld (aus Potsdam-München-Bremen) zielen auf die Herstellung multifunktionaler Polymerkapseln. Mit Hilfe dieses Transportsystems wollen sie eingeschlossene Enzyme an einen Ort bringen, an dem eben jene Enzyme ungiftige Vorstufen von Medikamenten zu hochwirksamen Arzneimitteln umsetzen. Diese so genannten aktiven Nanocontainer ermöglichen also dreierlei: die enzymatische Katalyse am Ort, die kontrollierte Freisetzung von eingeschlossenen Chemikalien sowie den zielgerichteten Transport von pharmazeutisch wirksamen Substanzen. Elegant an dem Vorhaben ist, dass sich mittels eingebauter leuchtender (lumineszierender) Kristalle einzelne Schritte dieser Prozesse verfolgen lassen. Zugleich ist angestrebt, die Nanocontainer mit Hilfe ebenfalls eingebauter magnetischer Nanopartikel über angelegte Magnetfelder extern zu steuern, um beispielsweise den zielgenauen Transport der Kapseln in spezifische Zellkompartimente beziehungsweise Gewebebereiche zu ermöglichen. Über die Kombination dieser - und weiterer - Mechanismen heben sich die Nanocontainer aus der Vielfalt vergleichbarer Systeme heraus. Und das zeichnet dieses von hervorragenden Nachwuchswissenschaftlern getragene Projekt aus.

Kontakte zu Projekt 2:
Dr. Gleb Sukhorukov
Telefon: 03 31/5 67 - 9429
E-Mail: gleb@mpikg-golm.mpg.de

Dr. Andrey Rogach
Telefon: 0 89/21 80 - 1418
E-Mail: andrey.rogach@physik.uni-muenchen.de
andrey.rogach@physik.uni-muenchen.de
Dr. Wolfgang J. Parak
Telefon: 0 89/21 80 - 2005
E-Mail: Wolfgang.Parak@physik.uni-muenchen.de

Professor Dr. Mathias Winterhalter
Telefon: 04 21/2 00 - 3248
E-Mail: m.winterhalter@iu-bremen.de

3. 354.800 Euro werden bewilligt für das Vorhaben "Developing and applying nanoscopic collagen templates for biotechnology, molecular cell biology and medicine" von Professor Dr. Daniel J. Müller vom Biotechnological Center und Professor Dr. Richard Funk vom Medizinisch-Theoretischen Zentrum (Universitätsklinikum) der Technischen Universität Dresden - sowie von Professor Dr. Jonathon Howard vom Max-Planck-Institut für Molekulare Zellbiologie und Genetik in Dresden.

Kontakte zu Projekt 3:
Professor Dr. Daniel J. Müller
Telefon: 03 51/2 10 - 2586
E-Mail: mueller@mpi-cbg.de

Professor Dr. Richard Funk
Telefon: 03 51/4 58 - 6110
E-Mail: richard.funk@mailbox.tu-dresden.de

Professor Dr. Jonathon Howard
Telefon: 03 51/2 10 - 2500
E-Mail: >howard@mpi-cbg.de

Die Grundlage zu diesem Projekt haben die Forscher bereits gelegt. Ihnen ist es gelungen, ultradünne fiberartige Strukturen - so genannte Kollagenmatrizen - herzustellen, die mechanisch und strukturell extrem stabil sind. Das heißt: Diese Matrizen verändern über einen langen Zeitraum ihre Struktur und Stabilität nicht, und das macht sie interessant für den Einsatz etwa in der Biomedizin. So könnten sich auf dieser "Unterlage" Zellen in definierten Schichtungen züchten lassen; Bewegung, Wachstum und Haftung dieser Zellen wären möglicherweise gezielt steuerbar. Die Kontrolle dieser zellulären Eigenschaften ist von Bedeutung etwa mit Blick auf die Züchtung von Gewebe, das der Wundheilung dient. Mögliche Anwendungen wären denkbar im Bereich des "tissue engineering" (künstliche Organe) und der Biomineralisation (Herstellung eines Materials mit unterschiedlichen lokalen Eigenschaften). Letztlich geht es darum, die Matrizen über verschiedene Strategien zu funktionalisieren und sie einzusetzen als programmierbare, intelligente Oberflächen, wie sie für zahlreiche medizinische und biotechnologische Anwendungen benötigt werden.

Bewilligt wurden des Weiteren:

4. 467.400 Euro für das Vorhaben "Functional composite-nanofibers by coelectrospinning: functional nanoobjects for life science" von Professor Dr. Joachim H. Wendorff und Professor Dr. Andreas Greiner vom Institut für Physikalische Chemie, Kernchemie und Makromolekulare Chemie der Universität Marburg - sowie Professor Dr. Alexander Yarin und Professor Dr. Eyal Zussman von der Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;

Kontakte zu Projekt 4:
Professor Dr. Joachim H. Wendorff
Telefon: 0 64 21/2 82 - 5964
E-Mail: wendorff@mailer.uni-marburg.de

Professor Dr. Andreas Greiner
Telefon: 0 64 21/2 82 - 5573
E-Mail: greiner@mailer.uni-marburg.degreiner@mailer.uni-marburg.de

5. 577.800 Euro für das Vorhaben "Functional polymer nanotubes by wetting of ordered porous templates: a platform for innovative applications" von Professor Dr. Ralf B. Wehrspohn vom Department Physik, Nanophotonische Materialien der Universität Paderborn - sowie Prof. Dr. Joachim H. Wendorff und Prof. Dr. Andreas Greiner vom Institut für Physikalische Chemie, Kern- und Makromolekulare Chemie der Universität Marburg;

Kontakt zu Projekt 5:
Professor Dr. Ralf B. Wehrspohn
Telefon: 0 52 51/60 - 2748
E-Mail: wehrspohn@physik.upb.de

6. 473.400 Euro für das Vorhaben "Self-organized pattern formation of biomolecules at silicon interfaces (SOBSI)" von Dr. Martin Kittler vom Institut für innovative Mikroelektronik (IHP GmbH), Frankfurt/Oder, Dr. Wolfgang Fritzsche vom Institut für Physikalische Hochtechnologie (IPHT) e. V. in Jena, Dr. Manfred Reiche vom Max-Planck-Institut für Mikrostrukturphysik in Halle und Privatdozent Dr. Michael Seibt vom IV. Physikalischen Institut der Universität Göttingen;

Kontakte zu Projekt 6:
Dr. Martin Kittler
Telefon: 03 35/56 25 - 130
E-Mail: kittler@ihp-microelectronics.com

Dr. Wolfgang Fritzsche
Telefon: 0 36 41/20 - 6304
E-Mail: fritzsche@ipht-jena.de

Dr. Manfred Reiche
Telefon: 03 45/5 58 26 76
E-Mail: reiche@mpi-halle.de

Privatdozent Dr. Michael Seibt
Telefon: 05 51/39 - 4553
E-Mail: seibt@ph4.physik.uni-goettingen.de

7. 102.900 Euro für die Fortsetzung des Vorhabens "Control of membrane permeability with novel types of amphiphilic macromolecules" von Professor Dr. Jörg Kreßler vom Institut für Bioengineering der Universität Halle-Wittenberg, Privatdozent Dr. Peter Pohl vom Forschungsinstitut für Molekulare Pharmakologie, Forschungsverbund Berlin e. V., Professor Dr. Bernd Stühn vom Institut für Festkörperphysik der Technischen Universität Darmstadt und Professor Dr. Holger Frey vom Institut für Organische Chemie der Universität Mainz.

Kontakte zu Projekt 7:
Professor Dr. Jörg Kreßler
Telefon: 03 45/55 - 25984
E-Mail: joerg.kressler@iw.uni-halle.de

Privatdozent Dr. Peter Pohl
Telefon: 0 30/94 79 - 3220
E-Mail: pohl@fmp-berlin.de

Professor Dr. Bernd Stühn
Telefon: 0 61 51/16 - 2783
E-Mail: stuehn@fkp.physik.tu-darmstadt.de

Professor Dr. Holger Frey
Telefon: 0 61 31/39 - 24078
E-Mail: hfrey@mail.uni-mainz.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Berichte zu: Förderinitiative Nanocontainer Verbundprojekt

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten