Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 


Nobel Prize in Medicine to Paul C Lauterbur and Peter Mansfield


The Nobel Assembly at Karolinska Institutet has today decided to award The Nobel Prize in Physiology or Medicine for 2003 jointly to Paul C Lauterbur and Peter Mansfield for their discoveries concerning "magnetic resonance imaging"


... mehr zu:

Imaging of human internal organs with exact and non-invasive methods is very important for medical diagnosis, treatment and follow-up. This year’’s Nobel Laureates in Physiology or Medicine have made seminal discoveries concerning the use of magnetic resonance to visualize different structures. These discoveries have led to the development of modern magnetic resonance imaging, MRI, which represents a breakthrough in medical diagnostics and research.

Atomic nuclei in a strong magnetic field rotate with a frequency that is dependent on the strength of the magnetic field. Their energy can be increased if they absorb radio waves with the same frequency (resonance). When the atomic nuclei return to their previous energy level, radio waves are emitted. These discoveries were awarded the Nobel Prize in Physics in 1952. During the following decades, magnetic resonance was used mainly for studies of the chemical structure of substances. In the beginning of the 1970s, this year’s Nobel Laureates made pioneering contributions, which later led to the applications of magnetic resonance in medical imaging.

Paul Lauterbur (born 1929), Urbana, Illinois, USA, discovered the possibility to create a two-dimensional picture by introducing gradients in the magnetic field. By analysis of the characteristics of the emitted radio waves, he could determine their origin. This made it possible to build up two-dimensional pictures of structures that could not be visualized with other methods.

Peter Mansfield (born 1933), Nottingham, England, further developed the utilization of gradients in the magnetic field. He showed how the signals could be mathematically analysed, which made it possible to develop a useful imaging technique. Mansfield also showed how extremely fast imaging could be achievable. This became technically possible within medicine a decade later.

Magnetic resonance imaging, MRI, is now a routine method within medical diagnostics. Worldwide, more than 60 million investigations with MRI are performed each year, and the method is still in rapid development. MRI is often superior to other imaging techniques and has significantly improved diagnostics in many diseases. MRI has replaced several invasive modes of examination and thereby reduced the risk and discomfort for many patients.

Nuclei of hydrogen atoms

Water constitutes about two thirds of the human body weight, and this high water content explains why magnetic resonance imaging has become widely applicable to medicine. There are differences in water content among tissues and organs. In many diseases the pathological process results in changes of the water content, and this is reflected in the MR image.

Water is a molecule composed of hydrogen and oxygen atoms. The nuclei of the hydrogen atoms are able to act as microscopic compass needles. When the body is exposed to a strong magnetic field, the nuclei of the hydrogen atoms are directed into order – stand "at attention". When submitted to pulses of radio waves, the energy content of the nuclei changes. After the pulse, a resonance wave is emitted when the nuclei return to their previous state.

The small differences in the oscillations of the nuclei are detected. By advanced computer processing, it is possible to build up a three-dimensional image that reflects the chemical structure of the tissue, including differences in the water content and in movements of the water molecules. This results in a very detailed image of tissues and organs in the investigated area of the body. In this manner, pathological changes can be documented.

Several Nobel Prizes

The resonance phenomenon is governed by a simple relation between the strength of the magnetic field and the frequency of the radio waves. For every type of atomic nucleus with unpaired protons and/or neutrons, there is a mathematical constant by which it is possible to determine the wavelength as a function of the strength of the magnetic field. This phenomenon was demonstrated in 1946 for protons (the smallest of all atomic nuclei) by Felix Bloch and Edward Mills Purcell, USA. They were awarded the Nobel Prize in Physics in 1952.

Other fundamental discoveries concerning magnetic resonance have in recent years resulted in two Nobel Prizes in Chemistry. In 1991, Richard Ernst, Switzerland, was awarded for his contributions to the development of the methodology of high resolution nuclear magnetic resonance spectroscopy. In 2002, Kurt Wüthrich, also Switzerland, was awarded for his development of nuclear magnetic resonance spectroscopy for determination of the three-dimensional structure of biological macromolecules in solution.

Discoveries of importance to medicine

This year’’s Nobel Laureates in Physiology or Medicine are awarded for crucial achievements in the development of applications of medical importance. In the beginning of the 1970s, they made seminal discoveries concerning the development of the technique to visualize different structures. These findings provided the basis for the development of magnetic resonance into a useful imaging method.

Paul Lauterbur discovered that introduction of gradients in the magnetic field made it possible to create two-dimensional images of structures that could not be visualized by other techniques. In 1973, he described how addition of gradient magnets to the main magnet made it possible to visualize a cross section of tubes with ordinary water surrounded by heavy water. No other imaging method can differentiate between ordinary and heavy water.

Peter Mansfield utilized gradients in the magnetic field in order to more precisely show differences in the resonance. He showed how the detected signals rapidly and effectively could be analysed and transformed to an image. This was an essential step in order to obtain a practical method. Mansfield also showed how extremely rapid imaging could be achieved by very fast gradient variations (so called echo-planar scanning). This technique became useful in clinical practice a decade later.

Rapid development within medicine

The medical use of magnetic resonance imaging has developed rapidly. The first MRI equipments in health were available at the beginning of the 1980s. In 2002, approximately 22 000 MRI cameras were in use worldwide, and more than 60 million MRI examinations were performed.

A great advantage with MRI is that it is harmless according to all present knowledge. The method does not use ionizing radiation, in contrast to ordinary X-ray (Nobel Prize in Physics in 1901) or computer tomography (Nobel Prize in Physiology or Medicine in 1979) examinations. However, patients with magnetic metal in the body or a pacemaker cannot be examined with MRI due to the strong magnetic field, and patients with claustrophobia may have difficulties undergoing MRI.

Especially valuable for examination of the brain and the spinal cord Today, MRI is used to examine almost all organs of the body. The technique is especially valuable for detailed imaging of the brain and the spinal cord. Nearly all brain disorders lead to alterations in water content, which is reflected in the MRI picture. A difference in water content of less than a percent is enough to detect a pathological change.

In multiple sclerosis, examination with MRI is superior for diagnosis and follow-up of the disease. The symptoms associated with multiple sclerosis are caused by local inflammation in the brain and the spinal cord. With MRI, it is possible to see where in the nervous system the inflammation is localized, how intense it is, and also how it is influenced by treatment.

Another example is prolonged lower back pain, leading to great suffering for the patient and to high costs for the society. It is important to be able to differentiate between muscle pain and pain caused by pressure on a nerve or the spinal cord. MRI examinations have been able to replace previous methods which were unpleasant for the patient. With MRI, it is possible to see if a disc herniation is pressing on a nerve and to determine if an operation is necessary.

Important preoperative tool

Since MRI yields detailed three-dimensional images, it is possible to get distinct information on where a lesion is localized. Such information is valuable before surgery. For instance, in certain microsurgical brain operations, the surgeon can operate with guidance from the MRI results. The images are detailed enough to allow placement of electrodes in central brain nuclei in order to treat severe pain or to treat movement disorders in Parkinson’’s disease.

Improved diagnostics in cancer

MRI examinations are very important in diagnosis, treatment and follow-up of cancer. The images can exactly reveal the limits of a tumour, which contributes to more precise surgery and radiation therapy. Before surgery, it is important to know whether the tumour has infiltrated the surrounding tissue. MRI can more exactly than other methods differentiate between tissues and thereby contribute to improved surgery.

MRI has also improved the possibilities to ascertain the stage of a tumour, and this is important for the choice of treatment. For example, MRI can determine how deep in the tissue a colon cancer has infiltrated and whether regional lymph nodes have been affected.

Reduced suffering for patients

MRI can replace previously used invasive examinations and thereby reduce the suffering for many patients. One example is investigation of the pancreatic and bile ducts with contrast media injection via an endoscope. This can in some cases lead to serious complications. Today, corresponding information can be obtained by MRI.

Diagnostic arthroscopy (examination with an optic instrument inserted into the joint) can be replaced by MRI. In the knee, it is possible to perform detailed MRI studies of the joint cartilage and the cruciate ligaments. Since no invasive instrument is needed in MRI, the risk of infection is eliminated.

Agneta Sjövall | The Swedish Research Council
Weitere Informationen:

Weitere Berichte zu: MRI

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Sechs innovative Projekte sind im Rennen um den begehrten European Health Award 2017
17.08.2017 | European Health Forum Gastein

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>



im innovations-report
in Kooperation mit academics

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie