Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunologische Forschergruppe wird gefördert

24.07.2003


Die Deutsche Forschungsgemeinschaft (DFG) hat die Einrichtung einer Forschergruppe, die sich mit der Beeinflussung immunologischer Prozesse durch membrannahe Signalmodule beschäftigt, an der Medizinischen Fakultät der Magdeburger Otto-von-Guericke-Universität beschlossen.


Vorausgegangen war dieser Entscheidung eine erfolgreiche Begutachtung des von den Magdeburger Wissenschaftlern vorgelegten Konzeptes im April diesen Jahres. Die Immunologie einschließlich Molekulare Medizin der Entzündung stellt neben den Neurowissenschaften den zweiten Forschungsschwerpunkt an der Medizinischen Fakultät Magdeburg dar.

Die von der DFG geförderte Forschergruppe "Beeinflussung immunologischer Prozesse durch membrannahe Signalmodule" untersucht die molekularen Mechanismen, die der Aktivierung von T- und B-Lymphozyten zu Grunde liegen. Lymphozyten stellen die zentralen Schaltstellen des Immunsystems dar und entscheiden über signalübertragende Rezeptoren, die auf ihrer Oberfläche exprimiert werden, ob und wie der Organismus auf pathogene Einflüsse der Umwelt reagiert. Dazu sind die Rezeptoren der Lymphozyten mit so genannten Adapterproteinen verschaltet. Die Adapterproteine funktionieren wie Relais-Stationen oder molekulare Biochips und verarbeiten die vielen Reize, die von außen auf die Lymphozyten einwirken im Zellinneren. Somit sind die Adapterproteine entscheidend an der Steuerung der Immunantwort beteiligt. Die Untersuchungen der Forschergruppe sollen Aufschluss darüber geben, wie genau diese Steuerung funktioniert und welche Signale von den Adaptermolekülen in die Zelle hinein und wieder zurückgegeben werden. Die Entschlüsselung der zellulären Vorgänge, die durch die Adapterproteine kontrolliert und gesteuert werden, kann in der Zukunft dazu genutzt werden, neue Konzepte für die Therapie von Autoimmunerkrankungen wie z.B. Multiple Sklerose, Schuppenflechte, Asthma, Morbus Crohn, Colitis ulceroa u.a. zu entwickeln.


In der Forschergruppe sind insgesamt 8 verschiedene Projekte angesiedelt und Wissenschaftler des Institutes für Immunologie der Medizinischen Fakultät arbeiten fächerübergreifend mit dem Max-Planck-Institut und dem Leibniz-Institut für Neurobiologie in Magdeburg zusammen. Daneben ist die Universität Bielefeld mit zwei Projekten vertreten. Neben klassischen zellbiologischen und biochemischen Ansätzen sollen in der Forschergruppe auch neue Wege beschritten werden. So sollen in einem Teilprojekt neue mikroskopische Methoden entwickelt werden, mit denen die aktivierungsbedingten Veränderungen einzelner Moleküle in lebenden Lymphozyten sichtbar gemacht werden können.

Professor Burkhart Schraven, Direktor des Institutes für Immunologie der Uni Magdeburg und Sprecher der Forschergruppe: "Offensichtlich hat unser fächerübergreifendes und interdisziplinäres Konzept die Gutachter der DFG überzeugt. Ich denke, das Konzept stellt eine Stärkung des Wissenschaftsstandortes Magdeburg dar und trägt mit den einzelnen Teilprojekten zur Vernetzung der Forschungsstrukturen zwischen der Medizinischen Fakultät, der Universität und den hiesigen An-Instituten bei. Die Vernetzung verschiedener Disziplinen und Forschungsrichtungen sollte in den nächsten Jahren weiter ausgebaut werden. Dies wird helfen, dem Standort Magdeburg noch mehr internationales Profil zu verleihen und damit die Chancen verbessern, im nationalen und internationalen Konkurrenzkampf um die immer knapper werdenden Ressourcen zu bestehen".

Der DFG-Bewilligungsausschuss für die Allgemeine Forschungsförderung hatte in seiner Sitzung am 1. Juli die Förderung von neun neuen Forschergruppen beschlossen. In diesen Gruppen arbeiten mehrere Wissenschaftlerinnen und Wissenschaftler an einer besonderen wissenschaftlichen Fragestellung interdisziplinär zusammen. Die Förderung von Forschergruppen soll helfen, für eine mittelfristig - meist auf sechs Jahre - angelegte, enge Zusammenarbeit die notwendige personelle und materielle Ausstattung bereitzustellen. Hiermit soll dazu beigetragen werden, neue Arbeitsrichtungen zu etablieren. Die neun Forschergruppen die deutschlandweit gefördert werden, erhalten nach Angaben der DFG in den nächsten zwei Jahren insgesamt etwa 8,7 Millionen Euro mit der Aussicht auf weitere 3,8 Millionen Euro im dritten Jahr. Aus diesem Topf wird die Magdeburger Forschergruppe in den nächsten beiden Jahren mit einem Betrag von ca. 1,1 Millionen Euro gefördert.

Nähere Auskünfte erteilt:

Professor Dr. med. Burkhart Schraven
Institut für Immunologie
Otto-von-Guericke-Universität Magdeburg
Leipziger Straße 44
39120 Magdeburg
Tel: 0391-67-15800
Fax: 0391-67-15852
e-mail: burkhart.schraven@medizin.uni-magdeburg.de

Kornelia Suske | idw
Weitere Informationen:
http://www.med.uni-magdeburg.de/fme/institute/iim

Weitere Berichte zu: Adapterprotein DFG Immunologie Lymphozyt

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie